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1 Introduction

Ur is a programming language designed to introduce richer type system features into functional programming
in the tradition of ML and Haskell. Ur is functional, pure, statically typed, and strict. Ur supports a powerful
kind of metaprogramming based on type-level computation with type-level records.

Ur/Web is Ur plus a special standard library and associated rules for parsing and optimization. Ur/Web
supports construction of dynamic web applications backed by SQL databases. The signature of the standard
library is such that well-typed Ur/Web programs “don’t go wrong” in a very broad sense. Not only do they
not crash during particular page generations, but they also may not:

• Suffer from any kinds of code-injection attacks

• Return invalid HTML

• Contain dead intra-application links

• Have mismatches between HTML forms and the fields expected by their handlers

• Include client-side code that makes incorrect assumptions about the “AJAX”-style services that the
remote web server provides

• Attempt invalid SQL queries

• Use improper marshaling or unmarshaling in communication with SQL databases or between browsers
and web servers

This type safety is just the foundation of the Ur/Web methodology. It is also possible to use metapro-
gramming to build significant application pieces by analysis of type structure. For instance, the demo includes
an ML-style functor for building an admin interface for an arbitrary SQL table. The type system guarantees
that the admin interface sub-application that comes out will always be free of the above-listed bugs, no
matter which well-typed table description is given as input.

The Ur/Web compiler also produces very efficient object code that does not use garbage collection. These
compiled programs will often be even more efficient than what most programmers would bother to write in
C. The compiler also generates JavaScript versions of client-side code, with no need to write those parts of
applications in a different language.

The official web site for Ur is:

http://www.impredicative.com/ur/

2 Installation

If you are lucky, then the following standard command sequence will suffice for installation, in a directory
to which you have unpacked the latest distribution tarball.

./configure

make

sudo make install
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Some other packages must be installed for the above to work. At a minimum, you need a standard
UNIX shell, with standard UNIX tools like sed and GCC (or an alternate C compiler) in your execution
path; MLton, the whole-program optimizing compiler for Standard ML; and the development files for the
OpenSSL C library. As of this writing, in the “testing” version of Debian Linux, this command will install
the more uncommon of these dependencies:

apt-get install mlton libssl-dev

Note that, like the Ur/Web compiler, MLton is a whole-program optimizing compiler, so it frequently
requires much more memory than old-fashioned compilers do. Expect building Ur/Web with MLton to
require not much less than a gigabyte of RAM. If a mlton invocation ends suspiciously, the most likely
explanation is that it has exhausted available memory.

To build programs that access SQL databases, you also need one of these client libraries for supported
backends.

apt-get install libpq-dev libmysqlclient-dev libsqlite3-dev

It is also possible to access the modules of the Ur/Web compiler interactively, within Standard ML of
New Jersey. To install the prerequisites in Debian testing:

apt-get install smlnj libsmlnj-smlnj ml-yacc ml-lpt

To begin an interactive session with the Ur compiler modules, run make smlnj, and then, from within an
sml session, run CM.make "src/urweb.cm";. The Compiler module is the main entry point, and you can
find its signature in src/compiler.sig.

To run an SQL-backed application with a backend besides SQLite, you will probably want to install one
of these servers.

apt-get install postgresql mysql-server

To use the Emacs mode, you must have a modern Emacs installed. We assume that you already know
how to do this, if you’re in the business of looking for an Emacs mode. The demo generation facility of
the compiler will also call out to Emacs to syntax-highlight code, and that process depends on the htmlize

module, which can be installed in Debian testing via:

apt-get install emacs-goodies-el

If you don’t want to install the Emacs mode, run ./configure with the argument -without-emacs.
Even with the right packages installed, configuration and building might fail to work. After you run

./configure, you will see the values of some named environment variables printed. You may need to adjust
these values to get proper installation for your system. To change a value, store your preferred alternative
in the corresponding UNIX environment variable, before running ./configure. For instance, here is how to
change the list of extra arguments that the Ur/Web compiler will pass to the C compiler and linker on every
invocation. Some older GCC versions need this setting to mask a bug in function inlining.

CCARGS=-fno-inline ./configure

Since the author is still getting a handle on the GNU Autotools that provide the build system, you
may need to do some further work to get started, especially in environments with significant differences
from Linux (where most testing is done). The variables PGHEADER, MSHEADER, and SQHEADER may be used
to set the proper C header files to include for the development libraries of PostgreSQL, MySQL, and
SQLite, respectively. To get libpq to link, one OS X user reported setting CCARGS="-I/opt/local/include

-L/opt/local/lib/postgresql84", after creating a symbolic link with ln -s /opt/local/include/postgresql84

/opt/local/include/postgresql.
The Emacs mode can be set to autoload by adding the following to your .emacs file.

(add-to-list ’load-path "/usr/local/share/emacs/site-lisp/urweb-mode")

(load "urweb-mode-startup")

Change the path in the first line if you chose a different Emacs installation path during configuration.
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3 Command-Line Compiler

3.1 Project Files

The basic inputs to the urweb compiler are project files, which have the extension .urp. Here is a sample
.urp file.

database dbname=test

sql crud1.sql

crud

crud1

The database line gives the database information string to pass to libpq. In this case, the string only
says to connect to a local database named test.

The sql line asks for an SQL source file to be generated, giving the commands to run to create the tables
and sequences that this application expects to find. After building this .urp file, the following commands
could be used to initialize the database, assuming that the current UNIX user exists as a Postgres user with
database creation privileges:

createdb test

psql -f crud1.sql test

A blank line separates the named directives from a list of modules to include in the project. Any line
may contain a shell-script-style comment, where any suffix of a line starting at a hash character # is ignored.

For each entry M in the module list, the file M.urs is included in the project if it exists, and the file M.ur

must exist and is always included.
Here is the complete list of directive forms. “FFI” stands for “foreign function interface,” Ur’s facility for

interaction between Ur programs and C and JavaScript libraries.

• [allow|deny] [url|mime|requestHeader|responseHeader|env|meta] PATTERN registers a rule gov-
erning which URLs, MIME types, HTTP request headers, HTTP response headers, environment vari-
able names, or HTML <meta> names are allowed to appear explicitly in this application. The first
such rule to match a name determines the verdict. If PATTERN ends in *, it is interpreted as a prefix
rule. Otherwise, a string must match it exactly.

• alwaysInline PATH requests that every call to the referenced function be inlined. Section 10 explains
how functions are assigned path strings.

• benignEffectful Module.ident registers an FFI function or transaction as having side effects. The
optimizer avoids removing, moving, or duplicating calls to such functions. Every effectful FFI function
must be registered, or the optimizer may make invalid transformations. This version of the effectful

directive registers that this function only has side effects that remain local to a single page generation.

• clientOnly Module.ident registers an FFI function or transaction that may only be run in client
browsers.

• clientToServer Module.ident adds FFI type Module.ident to the list of types that are OK to
marshal from clients to servers. Values like XML trees and SQL queries are hard to marshal without
introducing expensive validity checks, so it’s easier to ensure that the server never trusts clients to
send such values. The file include/urweb/urweb_cpp.h shows examples of the C support functions
that are required of any type that may be marshalled. These include attrify, urlify, and unurlify

functions.
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• coreInline TREESIZE sets how many nodes the AST of a function definition may have before the
optimizer stops trying hard to inline calls to that function. (This is one of two options for one of two
intermediate languages within the compiler.)

• database DBSTRING sets the string to pass to libpq to open a database connection.

• debug saves some intermediate C files, which is mostly useful to help in debugging the compiler itself.

• effectful Module.ident registers an FFI function or transaction as having side effects. The optimizer
avoids removing, moving, or duplicating calls to such functions. This is the default behavior for
transaction-based types.

• exe FILENAME sets the filename to which to write the output executable. The default for file P.urp is
P.exe.

• file URI FILENAME asks for the application executable to respond to requests for URI by serving a
snapshot of the contents of FILENAME as of compile time. That is, the file contents are baked into the
executable. System file /etc/mime.types is consulted (again, at compile time) to figure out the right
MIME type to suggest in the HTTP response.

• ffi FILENAME reads the file FILENAME.urs to determine the interface to a new FFI module. The name
of the module is calculated from FILENAME in the same way as for normal source files. See the files
include/urweb/urweb_cpp.h and src/c/urweb.c for examples of C headers and implementations for
FFI modules. In general, every type or value Module.ident becomes uw_Module_ident in C.

• html5 asks to generate HTML5 code, which primarily affects the first few lines of the output documents,
like the DOCTYPE. This option is on by default.

• include FILENAME adds FILENAME to the list of files to be #included in C sources. This is most useful
for interfacing with new FFI modules.

• jsFile FILENAME asks to serve the contents of a file as JavaScript. All such content is concatenated
into a single file, included via a <script> tag on every page that needs client-side scripting.

• jsFunc Module.ident=name gives the JavaScript name of an FFI value.

• library FILENAME parses FILENAME.urp and merges its contents with the rest of the current file’s
contents. If FILENAME.urp doesn’t exist, the compiler also tries FILENAME/lib.urp.

• limit class num sets a resource usage limit for generated applications. The limit class will be set
to the non-negative integer num. The classes are:

– cleanup: maximum number of cleanup operations (e.g., entries recording the need to deallocate
certain temporary objects) that may be active at once per request

– clients: maximum number of simultaneous connections to one application by web clients waiting
for new asynchronous messages sent with Basis.send

– database: maximum size of a database file (currently only used by SQLite, which interprets the
parameter as a number of pages, where page size is itself a quantity configurable in SQLite)

– deltas: maximum number of messages sendable in a single request handler with Basis.send

– globals: maximum number of global variables that FFI libraries may set in a single request
context

– headers: maximum size (in bytes) of per-request buffer used to hold HTTP headers for generated
pages

– heap: maximum size (in bytes) of per-request heap for dynamically allocated data
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– inputs: maximum number of top-level form fields per request

– messages: maximum size (in bytes) of per-request buffer used to hold a single outgoing message
sent with Basis.send

– page: maximum size (in bytes) of per-request buffer used to hold HTML content of generated
pages

– script: maximum size (in bytes) of per-request buffer used to hold JavaScript content of generated
pages

– subinputs: maximum number of form fields per request, excluding top-level fields

– time: maximum running time of a single page request, in units of approximately 0.1 seconds

– transactionals: maximum number of custom transactional actions (e.g., sending an e-mail) that
may be run in a single page generation

• link FILENAME adds FILENAME to the list of files to be passed to the linker at the end of compilation.
This is most useful for importing extra libraries needed by new FFI modules.

• linker CMD sets CMD as the command line prefix to use for linking C object files. The command line
will be completed with a space-separated list of .o and .a files, -L and -l flags, and finally with a -o

flag to set the location where the executable should be written.

• minHeap NUMBYTES sets the initial size for thread-local heaps used in handling requests. These heaps
grow automatically as needed (up to any maximum set with limit), but each regrow requires restarting
the request handling process.

• monoInline TREESIZE sets how many nodes the AST of a function definition may have before the
optimizer stops trying hard to inline calls to that function. (This is one of two options for one of two
intermediate languages within the compiler.)

• neverInline PATH requests that no call to the referenced function be inlined. Section 10 explains how
functions are assigned path strings.

• noMangleSql avoids adding a uw_ prefix in front of each identifier in SQL. With this experimental
feature, the burden is on the programmer to avoid naming tables or columns after SQL keywords!

• noXsrfProtection URIPREFIX turns off automatic cross-site request forgery protection for the page
handler identified by the given URI prefix. This will avoid checking cryptographic signatures on cookies,
which is generally a reasonable idea for some pages, such as login pages that are going to discard all
old cookie values, anyway.

• onError Module.var changes the handling of fatal application errors. Instead of displaying a default,
ugly error 500 page, the error page will be generated by calling function Module.var on a piece of
XML representing the error message. The error handler should have type xbody → transaction page.
Note that the error handler cannot be in the application’s main module, since that would register it
as explicitly callable via URLs.

• path NAME=VALUE creates a mapping from NAME to VALUE. This mapping may be used at the beginnings
of filesystem paths given to various other configuration directives. A path like $NAME/rest is expanded
to VALUE/rest. There is an initial mapping from the empty name (for paths like $/list) to the
directory where the Ur/Web standard library is installed. If you accept the default configure options,
this directory is /usr/local/lib/urweb/ur.

• prefix PREFIX sets the prefix included before every URI within the generated application. The default
is /.

• profile generates an executable that may be used with gprof.
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• rewrite KIND FROM TO gives a rule for rewriting canonical module paths. For instance, the canonical
path of a page may be Mod1.Mod2.mypage, while you would rather the page were accessed via a URL
containing only page. The directive rewrite url Mod1/Mod2/mypage page would accomplish that.
The possible values of KIND determine which kinds of objects are affected. The kind all matches any
object, and url matches page URLs. The kinds table, sequence, and view match those sorts of SQL
entities, and relation matches any of those three. cookie matches HTTP cookies, and style matches
CSS class names. If FROM ends in /*, it is interpreted as a prefix matching rule, and rewriting occurs by
replacing only the appropriate prefix of a path with TO. The TO field may be left empty to express the
idea of deleting a prefix. For instance, rewrite url Main/* will strip all Main/ prefixes from URLs.
While the actual external names of relations and styles have parts separated by underscores instead of
slashes, all rewrite rules must be written in terms of slashes. An optional suffix of [-] for a rewrite

directive asks to additionally replace all _ characters with - characters, which can be handy for, e.g.,
interfacing with an off-the-shelf CSS library that prefers hyphens over underscores.

• safeGet URI asks to allow the page handler assigned this canonical URI prefix to cause persistent side
effects, even if accessed via an HTTP GET request.

• script URL adds URL to the list of extra JavaScript files to be included at the beginning of any page
that uses JavaScript. This is most useful for importing JavaScript versions of functions found in new
FFI modules.

• serverOnly Module.ident registers an FFI function or transaction that may only be run on the server.

• sigfile PATH sets a path where your application should look for a key to use in cryptographic signing.
This is used to prevent cross-site request forgery attacks for any form handler that both reads a cookie
and creates side effects. If the referenced file doesn’t exist, an application will create it and read its
saved data on future invocations. You can also initialize the file manually with any contents at least
16 bytes long; the first 16 bytes will be treated as the key.

• sql FILENAME sets where to write an SQL file with the commands to create the expected database
schema. The default is not to create such a file.

• timeFormat FMT accepts a time format string, as processed by the POSIX C function strftime().
This controls the default rendering of time values, via the show instance for time.

• timeout N sets to N seconds the amount of time that the generated server will wait after the last contact
from a client before determining that that client has exited the application. Clients that remain active
will take the timeout setting into account in determining how often to ping the server, so it only makes
sense to set a high timeout to cope with browser and network delays and failures. Higher timeouts can
lead to more unnecessary client information taking up memory on the server. The timeout goes unused
by any page that doesn’t involve the recv function, since the server only needs to store per-client
information for clients that receive asynchronous messages.

• xhtml asks to generate XHTML code, which primarily affects the first few lines of the output docu-
ments, like the DOCTYPE.

3.2 Building an Application

To compile project P.urp, simply run

urweb P

The output executable is a standalone web server. Run it with the command-line argument -h to see which
options it takes. If the project file lists a database, the web server will attempt to connect to that database
on startup. See Section 10 for an explanation of the URI mapping convention, which determines how each
page of your application may be accessed via URLs.

To time how long the different compiler phases run, without generating an executable, run
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urweb -timing P

To stop the compilation process after type-checking, run

urweb -tc P

It is often worthwhile to run urweb in this mode, because later phases of compilation can take significantly
longer than type-checking alone, and the type checker catches many errors that would traditionally be found
through debugging a running application.

A related option is -dumpTypes, which, as long as parsing succeeds, outputs to stdout a summary of the
kinds of all identifiers declared with con and the types of all identifiers declared with val or val rec. This
information is dumped even if there are errors during type inference. Compiler error messages go to stderr,
not stdout, so it is easy to distinguish the two kinds of output programmatically. A refined version of this
option is -dumpTypesOnError, which only has an effect when there are compilation errors.

It may be useful to combine another option -unifyMore with -dumpTypes. Ur/Web type inference
proceeds in a series of stages, where the first is standard Hindley-Milner type inference as in ML, and the
later phases add more complex aspects. By default, an error detected in one phase cuts off the execution
of later phases. However, the later phases might still determine more values of unification variables. These
value choices might be “misguided,” since earlier phases have not come up with reasonable types at a coarser
detail level; but the unification decisions may still be useful for debugging and program understanding. So,
if a run with -dumpTypes leaves unification variables undetermined in positions where you would like to see
best-effort guesses instead, consider -unifyMore. Note that -unifyMore has no effect when type inference
succeeds fully, but it may lead to many more error messages when inference fails.

To output information relevant to CSS stylesheets (and not finish regular compilation), run

urweb -css P

The first output line is a list of categories of CSS properties that would be worth setting on the document
body. The remaining lines are space-separated pairs of CSS class names and categories of properties that
would be worth setting for that class. The category codes are divided into two varieties. Codes that reveal
properties of a tag or its (recursive) children are B for block-level elements, C for table captions, D for table
cells, L for lists, and T for tables. Codes that reveal properties of the precise tag that uses a class are b for
block-level elements, t for tables, d for table cells, - for table rows, H for the possibility to set a height, N for
non-replaced inline-level elements, R for replaced inline elements, and W for the possibility to set a width.

Ur/Web type inference can take a significant amount of time, so it can be helpful to cache type-inferred
versions of source files. This mode can be activated by running

urweb daemon start

Further urweb invocations in the same working directory will send requests to a background daemon process
that reuses type inference results whenever possible, tracking source file dependencies and modification times.
To stop the background daemon, run

urweb daemon stop

Communication happens via a UNIX domain socket in file .urweb_daemon in the working directory.

Some other command-line parameters are accepted:

• -boot: Run Ur/Web from a build tree (and not from a system install). This is useful if you’re testing
the compiler and don’t want to install it. It forces generation of statically linked executables.

• -ccompiler <PROGRAM>: Select an alternative C compiler to call with command lines in compiling
Ur/Web applications. (It’s possible to set the default compiler as part of the configure process, but
it may sometimes be useful to override the default.)
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• -db <DBSTRING>: Set database connection information, using the format expected by Postgres’s PQconnectdb(),
which is name1=value1 ... nameN=valueN. The same format is also parsed and used to discover
connection parameters for MySQL and SQLite. The only significant settings for MySQL are host,
hostaddr, port, dbname, user, and password. The only significant setting for SQLite is dbname, which
is interpreted as the filesystem path to the database. Additionally, when using SQLite, a database string
may be just a file path.

• -dbms [postgres|mysql|sqlite]: Sets the database backend to use.

– postgres: This is PostgreSQL, the default. Among the supported engines, Postgres best matches
the design philosophy behind Ur, with a focus on consistent views of data, even in the face of
much concurrency. Different database engines have different quirks of SQL syntax. Ur/Web tends
to use Postgres idioms where there are choices to be made, though the compiler translates SQL
as needed to support other backends.

A command sequence like this can initialize a Postgres database, using a file app.sql generated
by the compiler:

createdb app

psql -f app.sql app

– mysql: This is MySQL, another popular relational database engine that uses persistent server
processes. Ur/Web needs transactions to function properly. Many installations of MySQL use
non-transactional storage engines by default. Ur/Web generates table definitions that try to use
MySQL’s InnoDB engine, which supports transactions. You can edit the first line of a generated
.sql file to change this behavior, but it really is true that Ur/Web applications will exhibit bizarre
behavior if you choose an engine that ignores transaction commands.

A command sequence like this can initialize a MySQL database:

echo "CREATE DATABASE app" | mysql

mysql -D app <app.sql

– sqlite: This is SQLite, a simple filesystem-based transactional database engine. With this
backend, Ur/Web applications can run without any additional server processes. The other engines
are generally preferred for large-workload performance and full admin feature sets, while SQLite
is popular for its low resource footprint and ease of set-up.

A command like this can initialize an SQLite database:

sqlite3 path/to/database/file <app.sql

• -dumpSource: When compilation fails, output to stderr the complete source code of the last interme-
diate program before the compilation phase that signaled the error. (Warning: these outputs can be
very long and aren’t especially optimized for readability!)

• -explainEmbed: Trigger more verbose error messages about inability to embed server-side values in
client-side code.

• -limit class num: Equivalent to the limit directive from .urp files

• -moduleOf FILENAME: Prints the Ur/Web module name corresponding to source file FILENAME, exiting
immediately afterward.

• -output FILENAME: Set where the application executable is written.

• -path NAME VALUE: Set the value of path variable $NAME to VALUE, for use in .urp files.
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• -prefix PREFIX: Equivalent to the prefix directive from .urp files

• -print-ccompiler: Print the C compiler being used.

• -print-cinclude: Print the name of the directory where C/C++ header files are installed.

• -protocol [http|cgi|fastcgi|static]: Set the protocol that the generated application speaks.

– http: This is the default. It is for building standalone web servers that can be accessed by web
browsers directly.

– cgi: This is the classic protocol that web servers use to generate dynamic content by spawning
new processes. While Ur/Web programs may in general use message-passing with the send and
recv functions, that functionality is not yet supported in CGI, since CGI needs a fresh process
for each request, and message-passing needs to use persistent sockets to deliver messages.

Since Ur/Web treats paths in an unusual way, a configuration line like this one can be used to
configure an application that was built with URL prefix /Hello:

ScriptAlias /Hello /path/to/hello.exe

A different method can be used for, e.g., a shared host, where you can only configure Apache via
.htaccess files. Drop the generated executable into your web space and mark it as CGI somehow.
For instance, if the script ends in .exe, you might put this in .htaccess in the directory containing
the script:

Options +ExecCGI

AddHandler cgi-script .exe

Additionally, make sure that Ur/Web knows the proper URI prefix for your script. For instance,
if the script is accessed via http://somewhere/dir/script.exe, then include this line in your
.urp file:

prefix /dir/script.exe/

To access the foo function in the Bar module, you would then hit http://somewhere/dir/script.exe/Bar/foo.

If your application contains form handlers that read cookies before causing side effects, then you
will need to use the sigfile .urp directive, too.

– fastcgi: This is a newer protocol inspired by CGI, wherein web servers can start and reuse
persistent external processes to generate dynamic content. Ur/Web doesn’t implement the whole
protocol, but Ur/Web’s support has been tested to work with the mod_fastcgis of Apache and
lighttpd.

To configure a FastCGI program with Apache, one could combine the above ScriptAlias line
with a line like this:

FastCgiServer /path/to/hello.exe -idle-timeout 99999

The idle timeout is only important for applications that use message-passing. Client connections
may go long periods without receiving messages, and Apache tries to be helpful and garbage
collect them in such cases. To prevent that behavior, we specify how long a connection must be
idle to be collected.

Also see the discussion of the prefix directive for CGI above; similar configuration is likely to be
necessary for FastCGI. An Ur/Web application won’t generally run correctly if it doesn’t have a
unique URI prefix assigned to it and configured with prefix.

Here is some lighttpd configuration for the same application.
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fastcgi.server = (

"/Hello/" =>

(( "bin-path" => "/path/to/hello.exe",

"socket" => "/tmp/hello",

"check-local" => "disable",

"docroot" => "/",

"max-procs" => "1"

))

)

The least obvious requirement is setting max-procs to 1, so that lighttpd doesn’t try to multiplex
requests across multiple external processes. This is required for message-passing applications,
where a single database of client connections is maintained within a multi-threaded server process.
Multiple processes may, however, be used safely with applications that don’t use message-passing.

A FastCGI process reads the environment variable URWEB_NUM_THREADS to determine how many
threads to spawn for handling client requests. The default is 1.

– static: This protocol may be used to generate static web pages from Ur/Web code. The output
executable expects a single command-line argument, giving the URI of a page to generate. For
instance, this argument might be /main, in which case a static HTTP response for that page will
be written to stdout.

• -root Name PATH: Trigger an alternate module convention for all source files found in directory PATH

or any of its subdirectories. Any file PATH/foo.ur defines a module Name.Foo instead of the usual Foo.
Any file PATH/subdir/foo.ur defines a module Name.Subdir.Foo, and so on for arbitrary nesting of
subdirectories.

• -sigfile PATH: Same as the sigfile directive in .urp files

• -sql FILENAME: Set where a database set-up SQL script is written.

• -static: Link the runtime system statically. The default is to link against dynamic libraries.

• -stop PHASE: Stop compilation after the named phase, printing the intermediate program to stderr.
This flag is mainly useful for debugging the Ur/Web compiler itself.

There is an additional convenience method for invoking urweb. If the main argument is FOO, and FOO.ur

exists but FOO.urp doesn’t, then the invocation is interpreted as if called on a .urp file containing FOO as
its only main entry, with an additional rewrite all FOO/* directive.

There are also two experimental compiler extensions enabled with flags -iflow and -sqlcache. They
are intentionally not documented further here, to indicate just how very experimental they are!

3.3 Tutorial Formatting

The Ur/Web compiler also supports rendering of nice HTML tutorials from Ur source files, when invoked
like urweb -tutorial DIR. The directory DIR is examined for files whose names end in .ur. Every such file
is translated into a .html version.

These input files follow normal Ur syntax, with a few exceptions:

• The first line must be a comment like (* TITLE *), where TITLE is a string of your choice that will
be used as the title of the output page.

• While most code in the output HTML will be formatted as a monospaced code listing, text in regular
Ur comments is formatted as normal English text.
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• A comment like (* * HEADING *) introduces a section heading, with text HEADING of your choice.

• To include both a rendering of an Ur expression and a pretty-printed version of its value, bracket
the expression with (* begin eval *) and (* end *). The result of expression evaluation is pretty-
printed with show, so the expression type must belong to that type class.

• To include code that should not be shown in the tutorial (e.g., to add a show instance to use with
eval), bracket the code with (* begin hide *) and (* end *).

A word of warning: as for demo generation, tutorial generation calls Emacs to syntax-highlight Ur code.

3.4 Run-Time Options

Compiled applications consult a few environment variables to modify their behavior:

• URWEB_NUM_THREADS: alternative to the -t command-line argument (currently used only by FastCGI)

• URWEB_STACK_SIZE: size of per-thread stacks, in bytes

• URWEB_PQ_CON: when using PostgreSQL, overrides the compiled-in connection string

3.5 A Word of Warning on Heuristic Compilation

For server-side code, Ur/Web follows an unusual compilation model, where not all type-correct programs
can be compiled successfully, especially when using functions as data not known until runtime. See Section
12 for more detail.

4 Ur Syntax

In this section, we describe the syntax of Ur, deferring to a later section discussion of most of the syntax
specific to SQL and XML. The sole exceptions are the declaration forms for relations, cookies, and styles.

4.1 Lexical Conventions

We give the Ur language definition in LATEX math mode, since that is prettier than monospaced ASCII. The
corresponding ASCII syntax can be read off directly. Here is the key for mapping math symbols to ASCII
character sequences.

LATEX ASCII
→ ->

−→ -->

× *

λ fn

⇒ =>

=⇒ ==>

6= <>

≤ <=

≥ >=

x Normal textual identifier, not beginning with an uppercase letter
X Normal textual identifier, beginning with an uppercase letter
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We often write syntax like e∗ to indicate zero or more copies of e, e+ to indicate one or more copies, and
e,∗ and e,+ to indicate multiple copies separated by commas. Another separator may be used in place of a
comma. The e term may be surrounded by parentheses to indicate grouping; those parentheses should not
be included in the actual ASCII.

We write ` for literals of the primitive types, for the most part following C conventions. There are int,
float, char, and string literals. Character literals follow the SML convention instead of the C convention,
written like #"a" instead of ’a’.

This version of the manual doesn’t include operator precedences; see src/urweb.grm for that.
As in the ML language family, the syntax (* ... *) is used for (nestable) comments. Within XML

literals, Ur/Web also supports the usual <!- ... -> XML comments.

4.2 Core Syntax

Kinds classify types and other compile-time-only entities. Each kind in the grammar is listed with a descrip-
tion of the sort of data it classifies.

Kinds κ ::= Type proper types
Unit the trivial constructor
Name field names
κ→ κ type-level functions
{κ} type-level records
(κ×+) type-level tuples
X variable
X −→ κ kind-polymorphic type-level function

wildcard
(κ) explicit precedence

Ur supports several different notions of functions that take types as arguments. These arguments can be
either implicit, causing them to be inferred at use sites; or explicit, forcing them to be specified manually
at use sites. There is a common explicitness annotation convention applied at the definitions of and in the
types of such functions.

Explicitness ? ::= :: explicit
::: implicit

Constructors are the main class of compile-time-only data. They include proper types and are classified
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by kinds.

Constructors c, τ ::= (c) :: κ kind annotation
x̂ constructor variable

τ → τ function type
x ? κ→ τ polymorphic function type
X −→ τ kind-polymorphic function type
$c record type

c c type-level function application
λx :: κ⇒ c type-level function abstraction

X =⇒ c type-level kind-polymorphic function abstraction
c[κ] type-level kind-polymorphic function application

() type-level unit
#X field name

[(c = c)∗] known-length type-level record
c++ c type-level record concatenation
map type-level record map

(c,+ ) type-level tuple
c.n type-level tuple projection (n ∈ N+)

[c ∼ c]⇒ τ guarded type

:: κ wildcard
(c) explicit precedence

Qualified uncapitalized variables x̂ ::= x not from a module
M.x projection from a module

We include both abstraction and application for kind polymorphism, but applications are only inferred
internally; they may not be written explicitly in source programs. Also, in the “known-length type-level
record” form, in c1 = c2 terms, the parser currently only allows c1 to be of the forms X (as a shorthand for
#X) or x, or a natural number to stand for the corresponding field name (e.g., for tuples).
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Modules of the module system are described by signatures.

Signatures S ::= sig s∗ end constant
X variable
functor(X : S) : S functor
S where con x = c concretizing an abstract constructor
M.X projection from a module

Signature items s ::= con x :: κ abstract constructor
con x :: κ = c concrete constructor
datatype x x∗ = dc |+ algebraic datatype definition
datatype x = datatype M.x algebraic datatype import
val x : τ value
structure X : S sub-module
signature X = S sub-signature
include S signature inclusion
constraint c ∼ c record disjointness constraint
class x :: κ abstract constructor class
class x :: κ = c concrete constructor class

Datatype constructors dc ::= X nullary constructor
X of τ unary constructor

Patterns are used to describe structural conditions on expressions, such that expressions may be tested
against patterns, generating assignments to pattern variables if successful.

Patterns p ::= wildcard
x variable
` constant

X̂ nullary constructor

X̂ p unary constructor
{(X = p, )∗} rigid record pattern
{(X = p, )+, . . .} flexible record pattern
p : τ type annotation
(p) explicit precedence

Qualified capitalized variables X̂ ::= X not from a module
M.X projection from a module

Expressions are the main run-time entities, corresponding to both “expressions” and “statements” in
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mainstream imperative languages.

Expressions e ::= e : τ type annotation
x̂ variable

X̂ datatype constructor
` constant

e e function application
λx : τ ⇒ e function abstraction
e[c] polymorphic function application
λ[x ? κ]⇒ e polymorphic function abstraction
e[κ] kind-polymorphic function application
X =⇒ e kind-polymorphic function abstraction

{(c = e, )∗} known-length record
e.c record field projection
e++ e record concatenation
e -- c removal of a single record field
e --- c removal of multiple record fields

let ed∗ in e end local definitions

case e of (p⇒ e|)+ pattern matching

λ[c ∼ c]⇒ e guarded expression abstraction
e ! guarded expression application

wildcard
(e) explicit precedence

Local declarations ed ::= val x : τ = e non-recursive value
val rec (x : τ = e and)+ mutually recursive values

As with constructors, we include both abstraction and application for kind polymorphism, but applica-
tions are only inferred internally.
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Declarations primarily bring new symbols into context.

Declarations d ::= con x :: κ = c constructor synonym
datatype x x∗ = dc |+ algebraic datatype definition
datatype x = datatype M.x algebraic datatype import
val x : τ = e value
val rec (x : τ = e and)+ mutually recursive values
structure X : S = M module definition
signature X = S signature definition
open M module inclusion
constraint c ∼ c record disjointness constraint
open constraints M inclusion of just the constraints from a module
table x : c SQL table
view x = e SQL view
sequence x SQL sequence
cookie x : τ HTTP cookie
style x : τ CSS class
task e = e recurring task

Modules M ::= struct d∗ end constant
X variable
M.X projection
M(M) functor application
functor(X : S) : S = M functor abstraction

There are two kinds of Ur files. A file named M.ur is an implementation file, and it should contain a
sequence of declarations d∗. A file named M.urs is an interface file; it must always have a matching M.ur

and should contain a sequence of signature items s∗. When both files are present, the overall effect is the
same as a monolithic declaration structure M : sig s∗ end = struct d∗ end. When no interface file is included,
the overall effect is similar, with a signature for module M being inferred rather than just checked against
an interface.

We omit some extra possibilities in table syntax, deferring them to Section 9.1.1. The concrete syntax of
view declarations is also more complex than shown in the table above, with details deferred to Section 9.1.1.

4.3 Shorthands

There are a variety of derived syntactic forms that elaborate into the core syntax from the last subsection.
We will present the additional forms roughly following the order in which we presented the constructs that
they elaborate into.

In many contexts where record fields are expected, like in a projection e.c, a constant field may be written
as simply X, rather than #X.

A record type may be written {(c = c, )∗}, which elaborates to $[(c = c, )∗].
The notation [c1, . . . , cn] is shorthand for [c1 = (), . . . , cn = ()].
A tuple type τ1 × . . . × τn expands to a record type {1 : τ1, . . . , n : τn}, with natural numbers as field

names. A tuple expression (e1, . . . , en) expands to a record expression {1 = e1, . . . , n = en}. A tuple pattern
(p1, . . . , pn) expands to a rigid record pattern {1 = p1, . . . , n = pn}. Positive natural numbers may be used
in most places where field names would be allowed.

The syntax () expands to {} as a pattern or expression.
In general, several adjacent λ forms may be combined into one, and kind and type annotations may

be omitted, in which case they are implicitly included as wildcards. More formally, for constructor-level
abstractions, we can define a new non-terminal b ::= x | (x :: κ) | X and allow composite abstractions of the
form λb+ ⇒ c, elaborating into the obvious sequence of one core λ per element of b+.
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Further, the signature item or declaration syntax con x b+ = c is shorthand for wrapping of the appro-
priate λs around the righthand side c. The b elements may not include X, and there may also be an optional
:: κ before the =.

In some contexts, the parser isn’t happy with token sequences like x :: , to indicate a constructor variable
of wildcard kind. In such cases, write the second two tokens as :: , with no intervening spaces. Analogous
syntax ::: is available for implicit constructor arguments.

For any signature item or declaration that defines some entity to be equal to A with classification anno-
tation B (e.g., val x : B = A), B and the preceding colon (or similar punctuation) may be omitted, in which
case it is filled in as a wildcard.

A signature item or declaration type x or type x = τ is elaborated into con x :: Type or con x :: Type = τ ,
respectively.

A signature item or declaration class x = λy ⇒ c may be abbreviated class x y = c.
Handling of implicit and explicit constructor arguments may be tweaked with some prefixes to variable

references. An expression @x is a version of x where all type class instance and disjointness arguments have
been made explicit. (For the purposes of this paragraph, the type family Top.folder is a type class, though
it isn’t marked as one by the usual means; and any record type is considered to be a type class instance
type when every field’s type is a type class instance type.) An expression @@x achieves the same effect,
additionally making explicit all implicit constructor arguments. The default is that implicit arguments
are inserted automatically after any reference to a variable, or after any application of a variable to one
or more arguments. For such an expression, implicit wildcard arguments are added for the longest prefix
of the expression’s type consisting only of implicit polymorphism, type class instances, and disjointness
obligations. The same syntax works for variables projected out of modules and for capitalized variables
(datatype constructors).

At the expression level, an analogue is available of the composite λ form for constructors. We define the
language of binders as b ::= p | [x] | [x ? κ] | X | [c ∼ c]. A lone variable [x] stands for an implicit constructor
variable of unspecified kind. The standard value-level function binder is recovered as the type-annotated
pattern form x : τ . It is a compile-time error to include a pattern p that does not match every value of the
appropriate type.

A local val declaration may bind a pattern instead of just a plain variable. As for function arguments,
only irrefutable patterns are legal.

The keyword fun is a shorthand for val rec that allows arguments to be specified before the equal sign in the
definition of each mutually recursive function, as in SML. Each curried argument must follow the grammar
of the b non-terminal introduced two paragraphs ago. A fun declaration is elaborated into a version that
adds additional λs to the fronts of the righthand sides, as appropriate.

A signature item functor X1 (X2 : S1) : S2 is elaborated into structure X1 : functor(X2 : S1) : S2.
A declaration functor X1 (X2 : S1) : S2 = M is elaborated into structure X1 : functor(X2 : S1) : S2 =
functor(X2 : S1) : S2 = M .

An open constraints declaration is implicitly inserted for the argument of every functor at the beginning
of the functor body. For every declaration of the form structure X : S = struct . . . end, an open constraints X
declaration is implicitly inserted immediately afterward.

A declaration table x : {(c = c, )∗} is elaborated into table x : [(c = c, )∗].
The syntax where type is an alternate form of where con.
The syntax if e then e1 else e2 expands to case e of Basis.True⇒ e1 | Basis.False⇒ e2.
There are infix operator syntaxes for a number of functions defined in the Basis module. There is = for

eq, 6= for neq, − for neg (as a prefix operator) and minus, + for plus, × for times, / for div, % for mod, < for
lt, ≤ for le, > for gt, and ≥ for ge.

A signature item table x : c is shorthand for val x : Basis.sql table c []. view x : c is shorthand for
val x : Basis.sql view c, sequence x is short for val x : Basis.sql sequence. cookie x : τ is shorthand for
val x : Basis.http cookie τ , and style x is shorthand for val x : Basis.css class.

It is possible to write a let expression with its constituents in reverse order, along the lines of Haskell’s
where. An expression let e where ed∗ end desugars to let ed∗ in e end.
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Ur/Web also includes a few more infix operators: f <| x desugars to f x, x |> f to f x, f <<< g
to Top.compose f g, and g >>> f to Top.compose f g. (The latter two are doing function composition in
the usual way.) Furthermore, any identifier may be changed into an infix operator by placing it between
backticks, e.g. a silly way to do addition is x ‘plus‘ y instead of x+ y.

Hexadecimal integer literals are supported like 0xDEADBEEF. Only capital letters are allowed.

5 Static Semantics

In this section, we give a declarative presentation of Ur’s typing rules and related judgments. Inference is the
subject of the next section; here, we assume that an oracle has filled in all wildcards with concrete values.

The notations used here are the standard ones of programming language semantics. They are probably
the most effective way to convey this information. At the same time, most Ur/Web users can probably get
by without knowing the contents of this section! If you’re interested in diving into the details of Ur typing
but are unfamiliar with “inference rule notation,” I recommend the following book:

Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002.

Since there is significant mutual recursion among the judgments, we introduce them all before beginning
to give rules. We use the same variety of contexts throughout this section, implicitly introducing new sorts
of context entries as needed.

• Γ ` κ expresses kind well-formedness.

• Γ ` c :: κ assigns a kind to a constructor in a context.

• Γ ` c ∼ c proves the disjointness of two record constructors; that is, that they share no field names.
We overload the judgment to apply to pairs of field names as well.

• Γ ` c ↪→ C proves that record constructor c decomposes into set C of field names and record construc-
tors.

• Γ ` c ≡ c proves the computational equivalence of two constructors. This is often called a definitional
equality in the world of type theory.

• Γ ` e : τ is a standard typing judgment.

• Γ ` p Γ; τ combines typing of patterns with calculation of which new variables they bind.

• Γ ` d  Γ expresses how a declaration modifies a context. We overload this judgment to apply to
sequences of declarations, as well as to signature items and sequences of signature items.

• Γ ` S ≡ S is the signature equivalence judgment.

• Γ ` S ≤ S is the signature compatibility judgment. We write Γ ` S as shorthand for Γ ` S ≤ S.

• Γ `M : S is the module signature checking judgment.

• proj(M, s, V ) is a partial function for projecting a signature item from s, given the module M that we
project from. V may be con x, datatype x, val x, signature X, or structure X. The parameter M is
needed because the projected signature item may refer to other items from s.

• selfify(M, s) adds information to signature items s to reflect the fact that we are concerned with the
particular module M . This function is overloaded to work over individual signature items as well.
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5.1 Kind Well-Formedness

Γ ` Type Γ ` Unit Γ ` Name

Γ ` κ1 Γ ` κ2
Γ ` κ1 → κ2

Γ ` κ
Γ ` {κ}

∀i : Γ ` κi
Γ ` (κ1 × . . .× κn)

X ∈ Γ
Γ ` X

Γ, X ` κ
Γ ` X −→ κ

5.2 Kinding

We write [X 7→ κ1]κ2 for capture-avoiding substitution of κ1 for X in κ2.

Γ ` c :: κ
Γ ` (c) :: κ :: κ

x :: κ ∈ Γ
Γ ` x :: κ

x :: κ = c ∈ Γ
Γ ` x :: κ

Γ `M : sig s end proj(M, s, con x) = κ

Γ `M.x :: κ

Γ `M : sig s end proj(M, s, con x) = (κ, c)

Γ `M.x :: κ

Γ ` τ1 :: Type Γ ` τ2 :: Type

Γ ` τ1 → τ2 :: Type

Γ, x :: κ ` τ :: Type

Γ ` x ? κ→ τ :: Type

Γ, X ` τ :: Type

Γ ` X −→ τ :: Type

Γ ` c :: {Type}
Γ ` $c :: Type

Γ ` c1 :: κ1 → κ2 Γ ` c2 :: κ1
Γ ` c1 c2 :: κ2

Γ, x :: κ1 ` c :: κ2
Γ ` λx :: κ1 ⇒ c :: κ1 → κ2

Γ ` c :: X → κ Γ ` κ′
Γ ` c[κ′] :: [X 7→ κ′]κ

Γ, X ` c :: κ

Γ ` X =⇒ c :: X → κ

Γ ` () :: Unit Γ ` #X :: Name

∀i : Γ ` ci : Name Γ ` c′i :: κ ∀i 6= j : Γ ` ci ∼ cj
Γ ` [ci = c′i] :: {κ}

Γ ` c1 :: {κ} Γ ` c2 :: {κ} Γ ` c1 ∼ c2
Γ ` c1 ++ c2 :: {κ}

Γ ` map :: (κ1 → κ2)→ {κ1} → {κ2}

∀i : Γ ` ci :: κi
Γ ` (c) :: (κ1 × . . .× κn)

Γ ` c :: (κ1 × . . .× κn)

Γ ` c.i :: κi

Γ ` c1 :: {κ} Γ ` c2 :: {κ′} Γ, c1 ∼ c2 ` τ :: Type

Γ ` λ[c1 ∼ c2]⇒ τ :: Type

5.3 Record Disjointness

Γ ` c1 ↪→ C1 Γ ` c2 ↪→ C2 ∀c′1 ∈ C1, c
′
2 ∈ C2 : Γ ` c′1 ∼ c′2

Γ ` c1 ∼ c2
X 6= X ′

Γ ` X ∼ X ′

c′1 ∼ c′2 ∈ Γ Γ ` c′1 ↪→ C1 Γ ` c′2 ↪→ C2 c1 ∈ C1 c2 ∈ C2

Γ ` c1 ∼ c2

Γ ` c ↪→ {c} Γ ` [c = c′] ↪→ {c}
Γ ` c1 ↪→ C1 Γ ` c2 ↪→ C2

Γ ` c1 ++ c2 ↪→ C1 ∪ C2

Γ ` c ≡ c′ Γ ` c′ ↪→ C
Γ ` c ↪→ C

Γ ` c ↪→ C
Γ ` map f c ↪→ C
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5.4 Definitional Equality

We use C to stand for a one-hole context that, when filled, yields a constructor. The notation C[c] plugs
c into C. We omit the standard definition of one-hole contexts. We write [x 7→ c1]c2 for capture-avoiding
substitution of c1 for x in c2, with analogous notation for substituting a kind in a constructor.

Γ ` c ≡ c
Γ ` c2 ≡ c1
Γ ` c1 ≡ c2

Γ ` c1 ≡ c2 Γ ` c2 ≡ c3
Γ ` c1 ≡ c3

Γ ` c1 ≡ c2
Γ ` C[c1] ≡ C[c2]

x :: κ = c ∈ Γ
Γ ` x ≡ c

Γ `M : sig s end proj(M, s, con x) = (κ, c)

Γ `M.x ≡ c Γ ` (c).i ≡ ci

Γ ` (λx :: κ⇒ c) c′ ≡ [x 7→ c′]c Γ ` (X =⇒ c)[κ] ≡ [X 7→ κ]c

Γ ` c1 ++ c2 ≡ c2 ++ c1 Γ ` c1 ++ (c2 ++ c3) ≡ (c1 ++ c2) ++ c3

Γ ` [] ++ c ≡ c Γ ` [c1 = c′1] ++ [c2 = c′2] ≡ [c1 = c′1, c2 = c′2]

Γ ` map f [] ≡ [] Γ ` map f ([c1 = c2] ++ c) ≡ [c1 = f c2] ++ map f c

Γ ` map (λx⇒ x) c ≡ c Γ ` map f (map f ′ c) ≡ map (λx⇒ f (f ′ x)) c

Γ ` map f (c1 ++ c2) ≡ map f c1 ++ map f c2

5.5 Expression Typing

We assume the existence of a function T assigning types to literal constants. It maps integer constants to
Basis.int, float constants to Basis.float, character constants to Basis.char, and string constants to Basis.string.

We also refer to a function I, such that I(τ) “uses an oracle” to instantiate all constructor function
arguments at the beginning of τ that are marked implicit; i.e., replace x1 ::: κ1 → . . .→ xn ::: κn → τ with
[x1 7→ c1] . . . [xn 7→ cn]τ , where the cis are inferred and τ does not start like x ::: κ→ τ ′.

Γ ` e : τ
Γ ` e : τ : τ

Γ ` e : τ ′ Γ ` τ ′ ≡ τ
Γ ` e : τ Γ ` ` : T (`)

x : τ ∈ Γ
Γ ` x : I(τ)

Γ `M : sig s end proj(M, s, val x) = τ

Γ `M.x : I(τ)
X : τ ∈ Γ

Γ ` X : I(τ)

Γ `M : sig s end proj(M, s, val X) = τ

Γ `M.X : I(τ)

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1 e2 : τ2

Γ, x : τ1 ` e : τ2
Γ ` λx : τ1 ⇒ e : τ1 → τ2

Γ ` e : x :: κ→ τ Γ ` c :: κ
Γ ` e[c] : [x 7→ c]τ

Γ, x :: κ ` e : τ

Γ ` λ[x ? κ]⇒ e : x ? κ→ τ

Γ ` e : X −→ τ Γ ` κ
Γ ` e[κ] : [X 7→ κ]τ

Γ, X ` e : τ

Γ ` X =⇒ e : X −→ τ
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∀i : Γ ` ci :: Name Γ ` ei : τi ∀i 6= j : Γ ` ci ∼ cj
Γ ` {c = e} : {c : τ}

Γ ` e : $([c = τ ] ++ c′)

Γ ` e.c : τ

Γ ` e1 : $c1 Γ ` e2 : $c2 Γ ` c1 ∼ c2
Γ ` e1 ++ e2 : $(c1 ++ c2)

Γ ` e : $([c = τ ] ++ c′)

Γ ` e -- c : $c′
Γ ` e : $(c++ c′)

Γ ` e --- c : $c′

Γ ` ed Γ′ Γ′ ` e : τ

Γ ` let ed in e end : τ

∀i : Γ ` pi  Γi, τ
′ Γi ` ei : τ

Γ ` case e of p⇒ e : τ

Γ ` c1 :: {κ} Γ ` c2 :: {κ′} Γ, c1 ∼ c2 ` e : τ

Γ ` λ[c1 ∼ c2]⇒ e : λ[c1 ∼ c2]⇒ τ

Γ ` e : [c1 ∼ c2]⇒ τ Γ ` c1 ∼ c2
Γ ` e ! : τ

5.6 Pattern Typing

Γ `  Γ; τ Γ ` x Γ, x : τ ; τ Γ ` ` Γ;T (`)

X : x ::: Type→ τ ∈ Γ τ not a function type

Γ ` X  Γ; [xi 7→ τ ′i ]τ

X : x ::: Type→ τ ′′ → τ ∈ Γ Γ ` p Γ′; [xi 7→ τ ′i ]τ
′′

Γ ` X p Γ′; [xi 7→ τ ′i ]τ

Γ `M : sig s end proj(M, s, val X) = x ::: Type→ τ τ not a function type

Γ `M.X  Γ; [xi 7→ τ ′i ]τ

Γ `M : sig s end proj(M, s, val X) = x ::: Type→ τ ′′ → τ Γ ` p Γ′; [xi 7→ τ ′i ]τ
′′

Γ `M.X p Γ′; [xi 7→ τ ′i ]τ

Γ0 = Γ ∀i : Γi ` pi  Γi+1; τi

Γ ` {X = p} Γn; {X = τ}
Γ0 = Γ ∀i : Γi ` pi  Γi+1; τi

Γ ` {X = p, . . .} Γn; $([X = τ ] ++ c)

Γ ` p Γ′; τ ′ Γ ` τ ′ ≡ τ
Γ ` p : τ  Γ′; τ

5.7 Declaration Typing

We use an auxiliary judgment y;x; Γ ` dc  Γ′, expressing the enrichment of Γ with the types of the
datatype constructors dc, when they are known to belong to datatype x with type parameters y.

We presuppose the existence of a function O, where O(M, s) implements the open declaration by
producing a context with the appropriate entry for each available component of module M with signa-
ture items s. Where possible, O uses “transparent” entries (e.g., an abstract type M.x is mapped to
x :: Type = M.x), so that the relationship with M is maintained. A related function Oc builds a con-
text containing the disjointness constraints found in s. We write κn1 → κ as a shorthand, where κ01 → κ = κ
and κn+1

1 → κ2 = κ1 → (κn1 → κ2). We write len(y) for the length of vector y of variables.

Γ ` · Γ

Γ ` d Γ′ Γ′ ` d Γ′′

Γ ` d, d Γ′′
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Γ ` c :: κ
Γ ` con x :: κ = c Γ, x :: κ = c

y;x; Γ, x :: Typelen(y) → Type ` dc Γ′

Γ ` datatype x y = dc Γ′

Γ `M : sig s end proj(M, s, datatype z) = (y, dc) y;x; Γ, x :: Typelen(y) → Type = M.z ` dc Γ′

Γ ` datatype x = datatype M.z  Γ′

Γ ` e : τ
Γ ` val x : τ = e Γ, x : τ

∀i : Γ, x : τ ` ei : τi ei starts with an expression λ, optionally preceded by constructor and disjointness λs

Γ ` val rec x : τ = e Γ, x : τ

Γ `M : S M not a constant or application

Γ ` structure X : S = M  Γ, X : S

Γ `M : sig s end

Γ ` structure X : S = M  Γ, X : selfify(X, s)

Γ ` S
Γ ` signature X = S  Γ, X = S

Γ `M : sig s end

Γ ` open M  Γ,O(M, s)

Γ ` c1 :: {κ} Γ ` c2 :: {κ} Γ ` c1 ∼ c2
Γ ` constraint c1 ∼ c2  Γ

Γ `M : sig s end

Γ ` open constraints M  Γ,Oc(M, s)

Γ ` c :: {Type}
Γ ` table x : c Γ, x : Basis.sql table c []

Γ ` e :: Basis.sql query [] [] (map (λ ⇒ []) c′) c

Γ ` view x = e Γ, x : Basis.sql view c

Γ ` sequence x Γ, x : Basis.sql sequence

Γ ` τ :: Type

Γ ` cookie x : τ  Γ, x : Basis.http cookie τ Γ ` style x Γ, x : Basis.css class

Γ ` e1 :: Basis.task kind τ Γ ` e2 :: τ → Basis.transaction {}
Γ ` task e1 = e2  Γ

y;x; Γ ` · Γ

y;x; Γ ` dc Γ′

y;x; Γ ` X | dc Γ′, X : y ::: Type→ x y

y;x; Γ ` dc Γ′

y;x; Γ ` X of τ | dc Γ′, X : y ::: Type→ τ → x y
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5.8 Signature Item Typing

We appeal to a signature item analogue of the O function from the last subsection.
This is the first judgment where we deal with constructor classes, for the class forms. We will omit their

special handling in this formal specification. Section 6.3 gives an informal description of how constructor
classes influence type inference.

Γ ` · Γ
Γ ` s Γ′ Γ′ ` s Γ′′

Γ ` s, s Γ′′

Γ ` con x :: κ Γ, x :: κ
Γ ` c :: κ

Γ ` con x :: κ = c Γ, x :: κ = c

y;x; Γ, x :: Typelen(y) → Type ` dc Γ′

Γ ` datatype x y = dc Γ′

Γ `M : sig s end proj(M, s, datatype z) = (y, dc) y;x; Γ, x :: Typelen(y) → Type = M.z ` dc Γ′

Γ ` datatype x = datatype M.z  Γ′

Γ ` τ :: Type

Γ ` val x : τ  Γ, x : τ

Γ ` S
Γ ` structure X : S  Γ, X : S

Γ ` S
Γ ` signature X = S  Γ, X = S

Γ ` S Γ ` S ≡ sig s end

Γ ` include S  Γ,O(s)

Γ ` c1 :: {κ} Γ ` c2 :: {κ}
Γ ` constraint c1 ∼ c2  Γ, c1 ∼ c2

Γ ` c :: κ
Γ ` class x :: κ = c Γ, x :: κ = c Γ ` class x :: κ Γ, x :: κ

5.9 Signature Compatibility

To simplify the judgments in this section, we assume that all signatures are alpha-varied as necessary to
avoid including multiple bindings for the same identifier. This is in addition to the usual alpha-variation of
locally bound variables.

We rely on a judgment Γ ` s ≤ s′, which expresses the occurrence in signature items s of an item
compatible with s′. We also use a judgment Γ ` dc ≤ dc, which expresses compatibility of datatype
definitions.

Γ ` S ≡ S
Γ ` S2 ≡ S1

Γ ` S1 ≡ S2

X = S ∈ Γ
Γ ` X ≡ S

Γ `M : sig s end proj(M, s, signature X) = S

Γ `M.X ≡ S

Γ ` S ≡ sig s1 con x :: κ s2 end Γ ` c :: κ

Γ ` S where con x = c ≡ sig s1 con x :: κ = c s2 end

Γ ` S ≡ sig s end

Γ ` sig s1 include S s2 end ≡ sig s1 s s2 end
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Γ ` S1 ≡ S2

Γ ` S1 ≤ S2 Γ ` sig s end ≤ sig end

Γ ` s ≤ s′ Γ ` s′  Γ′ Γ′ ` sig s end ≤ sig s′ end

Γ ` sig s end ≤ sig s′ s′ end

Γ ` s ≤ s′
Γ ` s s ≤ s′

Γ ` s Γ′ Γ′ ` s ≤ s′
Γ ` s s ≤ s′

Γ ` S′1 ≤ S1 Γ, X : S′1 ` S2 ≤ S′2
Γ ` functor(X : S1) : S2 ≤ functor(X : S′1) : S′2

Γ ` con x :: κ ≤ con x :: κ Γ ` con x :: κ = c ≤ con x :: κ Γ ` datatype x y = dc ≤ con x :: Typelen(y) → Type

Γ `M : sig s end proj(M, s, datatype z) = (y, dc)

Γ ` datatype x = datatype M.z ≤ con x :: Typelen(y) → Type

Γ ` class x :: κ ≤ con x :: κ Γ ` class x :: κ = c ≤ con x :: κ

Γ ` c1 ≡ c2
Γ ` con x :: κ = c1 ≤ con x :: κ = c2

Γ ` c1 ≡ c2
Γ ` class x :: κ = c1 ≤ con x :: κ = c2

Γ, y :: Type ` dc ≤ dc′

Γ ` datatype x y = dc ≤ datatype x y = dc′

Γ `M : sig s end proj(M, s, datatype z) = (y, dc) Γ, y :: Type ` dc ≤ dc′

Γ ` datatype x = datatype M.z ≤ datatype x y = dc′

Γ ` · ≤ ·
Γ ` dc ≤ dc′

Γ ` X; dc ≤ X; dc′
Γ ` τ1 ≡ τ2 Γ ` dc ≤ dc′

Γ ` X of τ1; dc ≤ X of τ2; dc′

Γ `M.z ≡M ′.z′
Γ ` datatype x = datatype M.z ≤ datatype x = datatype M ′.z′

Γ ` τ1 ≡ τ2
Γ ` val x : τ1 ≤ val x : τ2

Γ ` S1 ≤ S2

Γ ` structure X : S1 ≤ structure X : S2

Γ ` S1 ≤ S2 Γ ` S2 ≤ S1

Γ ` signature X = S1 ≤ signature X = S2

Γ ` c1 ≡ c′1 Γ ` c2 ≡ c′2
Γ ` constraint c1 ∼ c2 ≤ constraint c′1 ∼ c′2

Γ ` class x :: κ ≤ class x :: κ Γ ` class x :: κ = c ≤ class x :: κ

Γ ` c1 ≡ c2
Γ ` class x :: κ = c1 ≤ class x :: κ = c2

Γ ` con x :: κ ≤ class x :: κ Γ ` con x :: κ = c ≤ class x :: κ

Γ ` c1 ≡ c2
Γ ` con x :: κ = c1 ≤ class x :: κ = c2
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5.10 Module Typing

We use a helper function sigOf, which converts declarations and sequences of declarations into their principal
signature items and sequences of signature items, respectively.

Γ `M : S′ Γ ` S′ ≤ S
Γ `M : S

Γ ` d Γ′

Γ ` struct d end : sig sigOf(d) end
X : S ∈ Γ
Γ ` X : S

Γ `M : sig s end proj(M, s, structure X) = S

Γ `M.X : S

Γ `M1 : functor(X : S1) : S2 Γ `M2 : S1

Γ `M1(M2) : [X 7→M2]S2

Γ ` S1 Γ, X : S1 ` S2 Γ, X : S1 `M : S2

Γ ` functor(X : S1) : S2 = M : functor(X : S1) : S2

sigOf(·) = ·
sigOf(s s′) = sigOf(s) sigOf(s′)

sigOf(con x :: κ = c) = con x :: κ = c

sigOf(datatype x y = dc) = datatype x y = dc

sigOf(datatype x = datatype M.z) = datatype x = datatype M.z

sigOf(val x : τ = e) = val x : τ

sigOf(val rec x : τ = e) = val x : τ

sigOf(structure X : S = M) = structure X : S

sigOf(signature X = S) = signature X = S

sigOf(open M) = include S (where Γ `M : S)

sigOf(constraint c1 ∼ c2) = constraint c1 ∼ c2
sigOf(open constraints M) = ·

sigOf(table x : c) = table x : c

sigOf(view x = e) = view x : c (where Γ ` e : Basis.sql query [] [] (map (λ ⇒ []) c′) c)

sigOf(sequence x) = sequence x

sigOf(cookie x : τ) = cookie x : τ

sigOf(style x) = style x
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selfify(M, ·) = ·
selfify(M, s s′) = selfify(M, s) selfify(M, s′)

selfify(M, con x :: κ) = con x :: κ = M.x

selfify(M, con x :: κ = c) = con x :: κ = c

selfify(M, datatype x y = dc) = datatype x y = datatype M.x

selfify(M, datatype x = datatype M ′.z) = datatype x = datatype M ′.z

selfify(M, val x : τ) = val x : τ

selfify(M, structure X : S) = structure X : selfify(M.X, s) (where Γ ` S ≡ sig s end)

selfify(M, signature X = S) = signature X = S

selfify(M, include S) = include S

selfify(M, constraint c1 ∼ c2) = constraint c1 ∼ c2
selfify(M, class x :: κ) = class x :: κ = M.x

selfify(M, class x :: κ = c) = class x :: κ = c
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5.11 Module Projection

proj(M, con x :: κ s, con x) = κ

proj(M, con x :: κ = c s, con x) = (κ, c)

proj(M, datatype x y = dc s, con x) = Typelen(y) → Type

proj(M, datatype x = datatype M ′.z s, con x) = (Typelen(y) → Type,M ′.z) (where Γ `M ′ : sig s′ end

and proj(M ′, s′, datatype z) = (y, dc))

proj(M, class x :: κ s, con x) = κ→ Type

proj(M, class x :: κ = c s, con x) = (κ→ Type, c)

proj(M, datatype x y = dc s, datatype x) = (y, dc)

proj(M, datatype x = datatype M ′.z s, con x) = proj(M ′, s′, datatype z) (where Γ `M ′ : sig s′ end)

proj(M, val x : τ s, val x) = τ

proj(M, datatype x y = dc s, val X) = y ::: Type→M.x y (where X ∈ dc)
proj(M, datatype x y = dc s, val X) = y ::: Type→ τ →M.x y (where X of τ ∈ dc)

proj(M, datatype x = datatype M ′.z, val X) = y ::: Type→M.x y (where Γ `M ′ : sig s′ end

and proj(M ′, s′, datatype z = (y, dc) and X ∈ dc)
proj(M, datatype x = datatype M ′.z, val X) = y ::: Type→ τ →M.x y (where Γ `M ′ : sig s′ end

and proj(M ′, s′, datatype z = (y, dc) and X of τ ∈ dc)

proj(M, structure X : S s, structure X) = S

proj(M, signature X = S s, signature X) = S

proj(M, con x :: κ s, V ) = [x 7→M.x]proj(M, s, V )

proj(M, con x :: κ = c s, V ) = [x 7→M.x]proj(M, s, V )

proj(M, datatype x y = dc s, V ) = [x 7→M.x]proj(M, s, V )

proj(M, datatype x = datatype M ′.z s, V ) = [x 7→M.x]proj(M, s, V )

proj(M, val x : τ s, V ) = proj(M, s, V )

proj(M, structure X : S s, V ) = [X 7→M.X]proj(M, s, V )

proj(M, signature X = S s, V ) = [X 7→M.X]proj(M, s, V )

proj(M, include S s, V ) = proj(M, s′ s, V ) (where Γ ` S ≡ sig s′ end)

proj(M, constraint c1 ∼ c2 s, V ) = proj(M, s, V )

proj(M, class x :: κ s, V ) = [x 7→M.x]proj(M, s, V )

proj(M, class x :: κ = c s, V ) = [x 7→M.x]proj(M, s, V )

6 Type Inference

The Ur/Web compiler uses heuristic type inference, with no claims of completeness with respect to the
declarative specification of the last section. The rules in use seem to work well in practice. This section
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summarizes those rules, to help Ur programmers predict what will work and what won’t.

6.1 Basic Unification

Type-checkers for languages based on the Hindley-Milner type discipline, like ML and Haskell, take advan-
tage of principal typing properties, making complete type inference relatively straightforward. Inference
algorithms are traditionally implemented using type unification variables, at various points asserting equal-
ities between types, in the process discovering the values of type variables. The Ur/Web compiler uses the
same basic strategy, but the complexity of the type system rules out easy completeness.

Type-checking can require evaluating recursive functional programs, thanks to the type-level map opera-
tor. When a unification variable appears in such a type, the next step of computation can be undetermined.
The value of that variable might be determined later, but this would be“too late” for the unification problems
generated at the first occurrence. This is the essential source of incompleteness.

Nonetheless, the unification engine tends to do reasonably well. Unlike in ML, polymorphism is never
inferred in definitions; it must be indicated explicitly by writing out constructor-level parameters. By writing
these and other annotations, the programmer can generally get the type inference engine to do most of the
type reconstruction work.

6.2 Unifying Record Types

The type inference engine tries to take advantage of the algebraic rules governing type-level records, as shown
in Section 5.4. When two constructors of record kind are unified, they are reduced to normal forms, with like
terms crossed off from each normal form until, hopefully, nothing remains. This cannot be complete, with
the inclusion of unification variables. The type-checker can help you understand what goes wrong when the
process fails, as it outputs the unmatched remainders of the two normal forms.

6.3 Constructor Classes

Ur includes a constructor class facility inspired by Haskell’s. The current version is experimental, with very
general Prolog-like facilities that can lead to compile-time non-termination.

Constructor classes are integrated with the module system. A constructor class of kind κ is just a
constructor of kind κ. By marking such a constructor c as a constructor class, the programmer instructs
the type inference engine to, in each scope, record all values of types c c1 . . . cn as instances. Any function
argument whose type is of such a form is treated as implicit, to be determined by examining the current
instance database. Any suitably kinded constructor within a module may be exposed as a constructor class
from outside the module, simply by using a class signature item instead of a con signature item in the
module’s signature.

The “dictionary encoding” often used in Haskell implementations is made explicit in Ur. Constructor
class instances are just properly typed values, and they can also be considered as “proofs” of membership in
the class. In some cases, it is useful to pass these proofs around explicitly. An underscore written where a
proof is expected will also be inferred, if possible, from the current instance database.

Just as for constructors, constructors classes may be exported from modules, and they may be exported
as concrete or abstract. Concrete constructor classes have their “real” definitions exposed, so that client
code may add new instances freely. Automatic inference of concrete class instances will not generally work,
so abstract classes are almost always the right choice. They are useful as “predicates” that can be used to
enforce invariants, as we will see in some definitions of SQL syntax in the Ur/Web standard library. Free
extension of a concrete class is easily supported by exporting a constructor function from a module, since
the class implementation will be concrete within the module.
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6.4 Reverse-Engineering Record Types

It’s useful to write Ur functions and functors that take record constructors as inputs, but these constructors
can grow quite long, even though their values are often implied by other arguments. The compiler uses a
simple heuristic to infer the values of unification variables that are mapped over, yielding known results.
If the result is empty, we’re done; if it’s not empty, we replace a single unification variable with a new
constructor formed from three new unification variables, as in [α = β] ++ γ. This process can often be
repeated to determine a unification variable fully.

6.5 Implicit Arguments in Functor Applications

Constructor, constraint, and constructor class witness members of structures may be omitted, when those
structures are used in contexts where their assigned signatures imply how to fill in those missing members.
This feature combines well with reverse-engineering to allow for uses of complicated meta-programming
functors with little more code than would be necessary to invoke an untyped, ad-hoc code generator.

7 The Ur Standard Library

The built-in parts of the Ur/Web standard library are described by the signature in lib/basis.urs in the
distribution. A module Basis ascribing to that signature is available in the initial environment, and every
program is implicitly prefixed by open Basis.

Additionally, other common functions that are definable within Ur are included in lib/top.urs and
lib/top.ur. This Top module is also opened implicitly.

The idea behind Ur is to serve as the ideal host for embedded domain-specific languages. For now,
however, the “generic” functionality is intermixed with Ur/Web-specific functionality, including in these two
library modules. We hope that these generic library components have types that speak for themselves. The
next section introduces the Ur/Web-specific elements. Here, we only give the type declarations from the
beginning of Basis.

type int
type float
type char
type string
type time
type blob

type unit = {}

datatype bool = False | True

datatype option t = None | Some of t

datatype list t = Nil | Cons of t× list t

The only unusual element of this list is the blob type, which stands for binary sequences. Simple blobs
can be created from strings via Basis.textBlob. Blobs will also be generated from HTTP file uploads.

Ur also supports polymorphic variants, a dual to extensible records that has been popularized by OCaml.
A type variant r represents an n-ary sum type, with one constructor for each field of record r. Each
constructor c takes an argument of type r.c; the type {} can be used to “simulate” a nullary constructor. The
make function builds a variant value, while match implements pattern-matching, with match cases represented
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as records of functions.

con variant :: {Type} → Type
val make : nm :: Name→ t ::: Type→ ts ::: {Type} → [[nm] ∼ ts]⇒ t→ variant ([nm = t] ++ ts)
val match : ts ::: {Type} → t ::: Type→ variant ts→ $(map (λt′ ⇒ t′ → t) ts)→ t

Another important generic Ur element comes at the beginning of top.urs.

con folder :: K −→ {K} → Type

val fold : K −→ tf :: ({K} → Type)
→ (nm :: Name→ v :: K→ r :: {K} → [[nm] ∼ r]⇒

tf r→ tf ([nm = v] ++ r))
→ tf []
→ r ::: {K} → folder r→ tf r

For a type-level record r, a folder r encodes a permutation of r’s elements. The fold function can be called
on a folder to iterate over the elements of r in that order. fold is parameterized on a type-level function to be
used to calculate the type of each intermediate result of folding. After processing a subset r′ of r’s entries,
the type of the accumulator should be tf r′. The next two expression arguments to fold are the usual step
function and initial accumulator, familiar from fold functions over lists. The final two arguments are the
record to fold over and a folder for it.

The Ur compiler treats folder like a constructor class, using built-in rules to infer folders for records with
known structure. The order in which field names are mentioned in source code is used as a hint about the
permutation that the programmer would like.

8 The Ur/Web Standard Library

Some operations are only allowed in server-side code or only in client-side code. The type system does not
enforce such restrictions, but the compiler enforces them in the process of whole-program compilation. In
the discussion below, we note when a set of operations has a location restriction.

8.1 Monads

The Ur Basis defines the monad constructor class from Haskell.

class monad :: Type→ Type
val return : m ::: (Type→ Type)→ t ::: Type
→ monad m
→ t→ m t

val bind : m ::: (Type→ Type)→ t1 ::: Type→ t2 ::: Type
→ monad m
→ m t1→ (t1→ m t2)
→ m t2

val mkMonad : m ::: (Type→ Type)
→ {Return : t ::: Type→ t→ m t,

Bind : t1 ::: Type→ t2 ::: Type→ m t1→ (t1→ m t2)→ m t2}
→ monad m

The Ur/Web compiler provides syntactic sugar for monads, similar to Haskell’s do notation. An expression
x ← e1; e2 is desugared to bind e1 (λx ⇒ e2), and an expression e1; e2 is desugared to bind e1 (λ() ⇒ e2).
Note a difference from Haskell: as the e1; e2 case desugaring involves a function with () as its formal argument,
the type of e1 must be of the form m {}, rather than some arbitrary m t.
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The syntactic sugar also allows p ← e1; e2 for p a pattern. The pattern should be guaranteed to match
any value of the corresponding type, or there will be a compile-time error.

8.2 Transactions

Ur is a pure language; we use Haskell’s trick to support controlled side effects. The standard library defines
a monad transaction, meant to stand for actions that may be undone cleanly. By design, no other kinds of
actions are supported.

con transaction :: Type→ Type
val transaction monad : monad transaction

For debugging purposes, a transactional function is provided for outputting a string on the server process’
stderr.

val debug : string→ transaction unit

8.3 HTTP

There are transactions for reading an HTTP header by name and for getting and setting strongly typed cook-
ies. Cookies may only be created by the cookie declaration form, ensuring that they be named consistently
based on module structure. For now, cookie operations are server-side only.

con http cookie :: Type→ Type
val getCookie : t ::: Type→ http cookie t→ transaction (option t)
val setCookie : t ::: Type→ http cookie t→ {Value : t,Expires : option time,Secure : bool} → transaction unit
val clearCookie : t ::: Type→ http cookie t→ transaction unit

There are also an abstract url type and functions for converting to it, based on the policy defined by
[allow|deny] url directives in the project file.

type url
val bless : string→ url
val checkUrl : string→ option url

bless raises a runtime error if the string passed to it fails the URL policy.
It is possible to grab the current page’s URL or to build a URL for an arbitrary transaction that would

also be an acceptable value of a link attribute of the a tag. These are server-side operations.

val currentUrl : transaction url
val url : transaction page→ url

Page generation may be interrupted at any time with a request to redirect to a particular URL instead.

val redirect : t ::: Type→ url→ transaction t

It’s possible for pages to return files of arbitrary MIME types. A file can be input from the user using this
data type, along with the upload form tag. These functions and those described in the following paragraph
are server-side.

type file
val fileName : file→ option string
val fileMimeType : file→ string
val fileData : file→ blob

It is also possible to get HTTP request headers and environment variables, and set HTTP response
headers, using abstract types similar to the one for URLs.

33



type requestHeader
val blessRequestHeader : string→ requestHeader
val checkRequestHeader : string→ option requestHeader
val getHeader : requestHeader→ transaction (option string)

type envVar
val blessEnvVar : string→ envVar
val checkEnvVar : string→ option envVar
val getenv : envVar→ transaction (option string)

type responseHeader
val blessResponseHeader : string→ responseHeader
val checkResponseHeader : string→ option responseHeader
val setHeader : responseHeader→ string→ transaction unit

A blob can be extracted from a file and returned as the page result. There are bless and check functions
for MIME types analogous to those for URLs.

type mimeType
val blessMime : string→ mimeType
val checkMime : string→ option mimeType
val returnBlob : t ::: Type→ blob→ mimeType→ transaction t

8.4 SQL

Everything about SQL database access is restricted to server-side code.
The fundamental unit of interest in the embedding of SQL is tables, described by a type family and

creatable only via the table declaration form.

con sql table :: {Type} → {{Unit}} → Type

The first argument to this constructor gives the names and types of a table’s columns, and the second
argument gives the set of valid keys. Keys are the only subsets of the columns that may be referenced as
foreign keys. Each key has a name.

We also have the simpler type family of SQL views, which have no keys.

con sql view :: {Type} → Type

A multi-parameter type class is used to allow tables and views to be used interchangeably, with a way of
extracting the set of columns from each.

class fieldsOf :: Type→ {Type} → Type
val fieldsOf table : fs ::: {Type} → keys ::: {{Unit}} → fieldsOf (sql table fs keys) fs
val fieldsOf view : fs ::: {Type} → fieldsOf (sql view fs) fs

8.4.1 Table Constraints

Tables may be declared with constraints, such that database modifications that violate the constraints are
blocked. A table may have at most one PRIMARY KEY constraint, which gives the subset of columns that will
most often be used to look up individual rows in the table.
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con primary key :: {Type} → {{Unit}} → Type
val no primary key : fs ::: {Type} → primary key fs []
val primary key : rest ::: {Type} → t ::: Type→ key1 :: Name→ keys :: {Type}
→ [[key1] ∼ keys]⇒ [[key1 = t] ++ keys ∼ rest]
⇒ $([key1 = sql injectable prim t] ++ map sql injectable prim keys)
→ primary key ([key1 = t] ++ keys ++ rest) [Pkey = [key1] ++ map (λ ⇒ ()) keys]

The type class sql injectable prim characterizes which types are allowed in SQL and are not option types. In
SQL, a PRIMARY KEY constraint enforces after-the-fact that a column may not contain NULLs, but Ur/Web
forces that information to be included in table types from the beginning. Thus, the only effect of this kind
of constraint in Ur/Web is to enforce uniqueness of the given key within the table.

A type family stands for sets of named constraints of the remaining varieties.

con sql constraints :: {Type} → {{Unit}} → Type

The first argument gives the column types of the table being constrained, and the second argument maps
constraint names to the keys that they define. Constraints that don’t define keys are mapped to “empty
keys.”

There is a type family of individual, unnamed constraints.

con sql constraint :: {Type} → {Unit} → Type

The first argument is the same as above, and the second argument gives the key columns for just this
constraint.

We have operations for assembling constraints into constraint sets.

val no constraint : fs ::: {Type} → sql constraints fs []
val one constraint : fs ::: {Type} → unique ::: {Unit} → name :: Name
→ sql constraint fs unique→ sql constraints fs [name = unique]

val join constraints : fs ::: {Type} → uniques1 ::: {{Unit}} → uniques2 ::: {{Unit}} → [uniques1 ∼ uniques2]
⇒ sql constraints fs uniques1→ sql constraints fs uniques2→ sql constraints fs (uniques1 ++ uniques2)

A UNIQUE constraint forces a set of columns to be a key, which means that no combination of column
values may occur more than once in the table. The unique1 and unique arguments are separated out only to
ensure that empty UNIQUE constraints are rejected.

val unique : rest ::: {Type} → t ::: Type→ unique1 :: Name→ unique :: {Type}
→ [[unique1] ∼ unique]⇒ [[unique1 = t] ++ unique ∼ rest]
⇒ sql constraint ([unique1 = t] ++ unique ++ rest) ([unique1] ++ map (λ ⇒ ()) unique)

A FOREIGN KEY constraint connects a set of local columns to a local or remote key, enforcing that the
local columns always reference an existent row of the foreign key’s table. A local column of type t may be
linked to a foreign column of type option t, and vice versa. We formalize that notion with a type class.

class linkable :: Type→ Type→ Type
val linkable same : t ::: Type→ linkable t t
val linkable from nullable : t ::: Type→ linkable (option t) t
val linkable to nullable : t ::: Type→ linkable t (option t)

The matching type family uses linkable to define when two keys match up type-wise.

con matching :: {Type} → {Type} → Type
val mat nil : matching [] []
val mat cons : t1 ::: Type→ rest1 ::: {Type} → t2 ::: Type→ rest2 ::: {Type} → nm1 :: Name→ nm2 :: Name
→ [[nm1] ∼ rest1]⇒ [[nm2] ∼ rest2]⇒ linkable t1 t2→ matching rest1 rest2
→ matching ([nm1 = t1] ++ rest1) ([nm2 = t2] ++ rest2)
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SQL provides a number of different propagation modes for FOREIGN KEY constraints, governing what
happens when a row containing a still-referenced foreign key value is deleted or modified to have a different
key value. The argument of a propagation mode’s type gives the local key type.

con propagation mode :: {Type} → Type
val restrict : fs ::: {Type} → propagation mode fs
val cascade : fs ::: {Type} → propagation mode fs
val no action : fs ::: {Type} → propagation mode fs
val set null : fs ::: {Type} → propagation mode (map option fs)

Finally, we put these ingredient together to define the FOREIGN KEY constraint function.

val foreign key : mine1 ::: Name→ t ::: Type→ mine ::: {Type} → munused ::: {Type} → foreign ::: {Type}
→ funused ::: {Type} → nm ::: Name→ uniques ::: {{Unit}}
→ [[mine1] ∼ mine]⇒ [[mine1 = t] ++ mine ∼ munused]⇒ [foreign ∼ funused]⇒ [[nm] ∼ uniques]
⇒ matching ([mine1 = t] ++ mine) foreign
→ sql table (foreign ++ funused) ([nm = map (λ ⇒ ()) foreign] ++ uniques)
→ {OnDelete : propagation mode ([mine1 = t] ++ mine),

OnUpdate : propagation mode ([mine1 = t] ++ mine)}
→ sql constraint ([mine1 = t] ++ mine ++ munused) []

The last kind of constraint is a CHECK constraint, which attaches a boolean invariant over a row’s contents.
It is defined using the sql exp type family, which we discuss in more detail below.

val check : fs ::: {Type} → sql exp [] [] fs bool→ sql constraint fs []

Section 9.1.1 shows the expanded syntax of the table declaration and signature item that includes con-
straints. There is no other way to use constraints with SQL in Ur/Web.

8.4.2 Queries

A final query is constructed via the sql query function. Constructor arguments respectively specify the
unrestricted free table variables (which will only be available in subqueries), the free table variables that
may only be mentioned within arguments to aggregate functions, table fields we select (as records mapping
tables to the subsets of their fields that we choose), and the (always named) extra expressions that we select.

con sql query :: {{Type}} → {{Type}} → {{Type}} → {Type} → Type
val sql query : free ::: {{Type}}
→ afree ::: {{Type}}
→ tables ::: {{Type}}
→ selectedFields ::: {{Type}}
→ selectedExps ::: {Type}
→ [free ∼ tables]
⇒ {Rows : sql query1 free afree tables selectedFields selectedExps,

OrderBy : sql order by (free ++ tables) selectedExps,
Limit : sql limit,
Offset : sql offset}
→ sql query free afree selectedFields selectedExps

Queries are used by folding over their results inside transactions.

val query : tables ::: {{Type}} → exps ::: {Type} → [tables ∼ exps]⇒ state ::: Type→ sql query [] [] tables exps
→ ($(exps ++ map (λfields :: {Type} ⇒ $fields) tables)
→ state→ transaction state)
→ state→ transaction state
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Most of the complexity of the query encoding is in the type sql query1, which includes simple queries and
derived queries based on relational operators. Constructor arguments respectively specify the unrestricted
free table veriables, the aggregate-only free table variables, the tables we select from, the subset of fields that
we keep from each table for the result rows, and the extra expressions that we select.

con sql query1 :: {{Type}} → {{Type}} → {{Type}} → {{Type}} → {Type} → Type

type sql relop
val sql union : sql relop
val sql intersect : sql relop
val sql except : sql relop
val sql relop : free ::: {{Type}}
→ afree ::: {{Type}}
→ tables1 ::: {{Type}}
→ tables2 ::: {{Type}}
→ selectedFields ::: {{Type}}
→ selectedExps ::: {Type}
→ sql relop
→ bool (∗ ALL ∗)
→ sql query1 free afree tables1 selectedFields selectedExps
→ sql query1 free afree tables2 selectedFields selectedExps
→ sql query1 free afree selectedFields selectedFields selectedExps

val sql query1 : free ::: {{Type}}
→ afree ::: {{Type}}
→ tables ::: {{Type}}
→ grouped ::: {{Type}}
→ selectedFields ::: {{Type}}
→ selectedExps ::: {Type}
→ empties :: {Unit}
→ [free ∼ tables]
⇒ [free ∼ grouped]
⇒ [afree ∼ tables]
⇒ [empties ∼ selectedFields]
⇒ {Distinct : bool,

From : sql from items free tables,
Where : sql exp (free ++ tables) afree [] bool,
GroupBy : sql subset tables grouped,
Having : sql exp (free ++ grouped) (afree ++ tables) [] bool,
SelectFields : sql subset grouped (map (λ ⇒ []) empties ++ selectedFields),
SelectExps : $(map (sql expw (free ++ grouped) (afree ++ tables) []) selectedExps)}
→ sql query1 free afree tables selectedFields selectedExps

To encode projection of subsets of fields in SELECT clauses, and to encode GROUP BY clauses, we rely
on a type family sql subset, capturing what it means for one record of table fields to be a subset of another.
The main constructor sql subset “proves subset facts” by requiring a split of a record into kept and dropped
parts. The extra constructor sql subset all is a convenience for keeping all fields of a record.

con sql subset :: {{Type}} → {{Type}} → Type
val sql subset : keep drop :: {({Type} × {Type})}
→ sql subset

(map (λfields :: ({Type} × {Type})⇒ fields.1 ++ fields.2) keep drop)
(map (λfields :: ({Type} × {Type})⇒ fields.1) keep drop)

val sql subset all : tables :: {{Type}} → sql subset tables tables
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SQL expressions are used in several places, including SELECT, WHERE, HAVING, and ORDER BY clauses.
They reify a fragment of the standard SQL expression language, while making it possible to inject“native”Ur
values in some places. The arguments to the sql exp type family respectively give the unrestricted-availability
table fields, the table fields that may only be used in arguments to aggregate functions, the available selected
expressions, and the type of the expression.

con sql exp :: {{Type}} → {{Type}} → {Type} → Type→ Type

Any field in scope may be converted to an expression.

val sql field : otherTabs ::: {{Type}} → otherFields ::: {Type}
→ fieldType ::: Type→ agg ::: {{Type}}
→ exps ::: {Type}
→ tab :: Name→ field :: Name
→ sql exp ([tab = [field = fieldType] ++ otherFields] ++ otherTabs) agg exps fieldType

There is an analogous function for referencing named expressions.

val sql exp : tabs ::: {{Type}} → agg ::: {{Type}} → t ::: Type→ rest ::: {Type} → nm :: Name
→ sql exp tabs agg ([nm = t] ++ rest) t

Ur values of appropriate types may be injected into SQL expressions.

class sql injectable prim
val sql bool : sql injectable prim bool
val sql int : sql injectable prim int
val sql float : sql injectable prim float
val sql string : sql injectable prim string
val sql time : sql injectable prim time
val sql blob : sql injectable prim blob
val sql channel : t ::: Type→ sql injectable prim (channel t)
val sql client : sql injectable prim client

class sql injectable
val sql prim : t ::: Type→ sql injectable prim t→ sql injectable t
val sql option prim : t ::: Type→ sql injectable prim t→ sql injectable (option t)

val sql inject : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → t ::: Type→ sql injectable t
→ t→ sql exp tables agg exps t

Additionally, most function-free types may be injected safely, via the serialized type family.

con serialized :: Type→ Type
val serialize : t ::: Type→ t→ serialized t
val deserialize : t ::: Type→ serialized t→ t
val sql serialized : t ::: Type→ sql injectable prim (serialized t)

We have the SQL nullness test, which is necessary because of the strange SQL semantics of equality in
the presence of null values.

val sql is null : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → t ::: Type
→ sql exp tables agg exps (option t)→ sql exp tables agg exps bool
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As another way of dealing with null values, there is also a restricted form of the standard COALESCE

function.
val sql coalesce : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type}
→ t ::: Type
→ sql exp tables agg exps (option t)
→ sql exp tables agg exps t
→ sql exp tables agg exps t

We have generic nullary, unary, and binary operators.

con sql nfunc :: Type→ Type
val sql current timestamp : sql nfunc time
val sql nfunc : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → t ::: Type
→ sql nfunc t→ sql exp tables agg exps t

con sql unary :: Type→ Type→ Type
val sql not : sql unary bool bool
val sql unary : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → arg ::: Type→ res ::: Type
→ sql unary arg res→ sql exp tables agg exps arg→ sql exp tables agg exps res

con sql binary :: Type→ Type→ Type→ Type
val sql and : sql binary bool bool bool
val sql or : sql binary bool bool bool
val sql binary : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → arg1 ::: Type→ arg2 ::: Type→ res ::: Type
→ sql binary arg1 arg2 res→ sql exp tables agg exps arg1 → sql exp tables agg exps arg2 → sql exp tables agg exps res

class sql arith
val sql int arith : sql arith int
val sql float arith : sql arith float
val sql neg : t ::: Type→ sql arith t→ sql unary t t
val sql plus : t ::: Type→ sql arith t→ sql binary t t t
val sql minus : t ::: Type→ sql arith t→ sql binary t t t
val sql times : t ::: Type→ sql arith t→ sql binary t t t
val sql div : t ::: Type→ sql arith t→ sql binary t t t
val sql mod : sql binary int int int

Finally, we have aggregate functions. The COUNT(∗) syntax is handled specially, since it takes no real
argument. The other aggregate functions are placed into a general type family, using constructor classes to
restrict usage to properly typed arguments. The key aspect of the sql aggregate function’s type is the shift
of aggregate-function-only fields into unrestricted fields.

val sql count : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → sql exp tables agg exps int

con sql aggregate :: Type→ Type→ Type
val sql aggregate : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → dom ::: Type→ ran ::: Type
→ sql aggregate dom ran→ sql exp agg agg exps dom→ sql exp tables agg exps ran

val sql count col : t ::: Type→ sql aggregate (option t) int

Most aggregate functions are typed using a two-parameter constructor class nullify which maps option
types to themselves and adds option to others. That is, this constructor class represents the process of
making an SQL type “nullable.”
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class sql summable
val sql summable int : sql summable int
val sql summable float : sql summable float
val sql avg : t ::: Type→ sql summable t→ sql aggregate t (option float)
val sql sum : t ::: Type→ nt ::: Type→ sql summable t→ nullify t nt→ sql aggregate t nt

class sql maxable
val sql maxable int : sql maxable int
val sql maxable float : sql maxable float
val sql maxable string : sql maxable string
val sql maxable time : sql maxable time
val sql max : t ::: Type→ nt ::: Type→ sql maxable t→ nullify t nt→ sql aggregate t nt
val sql min : t ::: Type→ nt ::: Type→ sql maxable t→ nullify t nt→ sql aggregate t nt

Any SQL query that returns single columns may be turned into a subquery expression.

val sql subquery : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → nm ::: Name→ t ::: Type→ nt ::: Type
→ nullify t nt→ sql query tables agg [] [nm = t]→ sql exp tables agg exps nt

There is also an IF..THEN..ELSE.. construct that is compiled into standard SQL CASE expressions.

val sql if then else : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → t ::: Type
→ sql exp tables agg exps bool
→ sql exp tables agg exps t
→ sql exp tables agg exps t
→ sql exp tables agg exps t

FROM clauses are specified using a type family, whose arguments are the free table variables and the table
variables bound by this clause.

con sql from items :: {{Type}} → {{Type}} → Type
val sql from table : free ::: {{Type}}
→ t ::: Type→ fs ::: {Type} → fieldsOf t fs→ name :: Name→ t→ sql from items free [name = fs]

val sql from query : free ::: {{Type}} → fs ::: {Type} → name :: Name→ sql query free [] fs→ sql from items free [name = fs]
val sql from comma : free ::: tabs1 ::: {{Type}} → tabs2 ::: {{Type}} → [tabs1 ∼ tabs2]
⇒ sql from items free tabs1→ sql from items free tabs2
→ sql from items free (tabs1 ++ tabs2)

val sql inner join : free ::: {{Type}} → tabs1 ::: {{Type}} → tabs2 ::: {{Type}}
→ [free ∼ tabs1]⇒ [free ∼ tabs2]⇒ [tabs1 ∼ tabs2]
⇒ sql from items free tabs1→ sql from items free tabs2
→ sql exp (free ++ tabs1 ++ tabs2) [] [] bool
→ sql from items free (tabs1 ++ tabs2)

Besides these basic cases, outer joins are supported, which requires a type class for turning non-option
columns into option columns.

class nullify :: Type→ Type→ Type
val nullify option : t ::: Type→ nullify (option t) (option t)
val nullify prim : t ::: Type→ sql injectable prim t→ nullify t (option t)

Left, right, and full outer joins can now be expressed using functions that accept records of nullify
instances. Here, we give only the type for a left join as an example.
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val sql left join : free ::: {{Type}} → tabs1 ::: {{Type}} → tabs2 ::: {{(Type× Type)}}
→ [free ∼ tabs1]⇒ [free ∼ tabs2]⇒ [tabs1 ∼ tabs2]
⇒ $(map (λr⇒ $(map (λp :: (Type× Type)⇒ nullify p.1 p.2) r)) tabs2)
→ sql from items free tabs1→ sql from items free (map (map (λp :: (Type× Type)⇒ p.1)) tabs2)
→ sql exp (free ++ tabs1 ++ map (map (λp :: (Type× Type)⇒ p.1)) tabs2) [] [] bool
→ sql from items free (tabs1 ++ map (map (λp :: (Type× Type)⇒ p.2)) tabs2)

We wrap up the definition of query syntax with the types used in representing ORDER BY, LIMIT, and
OFFSET clauses.

type sql direction
val sql asc : sql direction
val sql desc : sql direction

con sql order by :: {{Type}} → {Type} → Type
val sql order by Nil : tables ::: {{Type}} → exps :: {Type} → sql order by tables exps
val sql order by Cons : tf ::: ({{Type}} → {{Type}} → {Type} → Type→ Type)
→ tables ::: {{Type}} → exps ::: {Type} → t ::: Type
→ sql window tf → tf tables [] exps t→ sql direction→ sql order by tables exps→ sql order by tables exps

val sql order by random : tables ::: {{Type}} → exps ::: {Type} → sql order by tables exps

type sql limit
val sql no limit : sql limit
val sql limit : int→ sql limit

type sql offset
val sql no offset : sql offset
val sql offset : int→ sql offset

When using Postgres, SELECT and ORDER BY are allowed to contain top-level uses of window functions. A
separate type family sql_expw is provided for such cases, with some type class convenience for overloading
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between normal and window expressions.

con sql expw :: {{Type}} → {{Type}} → {Type} → Type→ Type

class sql window :: ({{Type}} → {{Type}} → {Type} → Type→ Type)→ Type
val sql window normal : sql window sql exp
val sql window fancy : sql window sql expw
val sql window : tf ::: ({{Type}} → {{Type}} → {Type} → Type→ Type)
→ tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → t ::: Type
→ sql window tf
→ tf tables agg exps t
→ sql expw tables agg exps t

con sql partition :: {{Type}} → {{Type}} → {Type} → Type
val sql no partition : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type}
→ sql partition tables agg exps

val sql partition : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type} → t ::: Type
→ sql exp tables agg exps t
→ sql partition tables agg exps

con sql window function :: {{Type}} → {{Type}} → {Type} → Type→ Type
val sql window function : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type}
→ t ::: Type
→ sql window function tables agg exps t
→ sql partition tables agg exps
→ sql order by tables exps
→ sql expw tables agg exps t

val sql window aggregate : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type}
→ t ::: Type→ nt ::: Type
→ sql aggregate t nt
→ sql exp tables agg exps t
→ sql window function tables agg exps nt

val sql window count : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type}
→ sql window function tables agg exps int

val sql rank : tables ::: {{Type}} → agg ::: {{Type}} → exps ::: {Type}
→ sql window function tables agg exps int

8.4.3 DML

The Ur/Web library also includes an embedding of a fragment of SQL’s DML, the Data Manipulation
Language, for modifying database tables. Any piece of DML may be executed in a transaction.

type dml
val dml : dml→ transaction unit

The function Basis.dml will trigger a fatal application error if the command fails, for instance, because a
data integrity constraint is violated. An alternate function returns an error message as a string instead.

val tryDml : dml→ transaction (option string)

Properly typed records may be used to form INSERT commands.

val insert : fields ::: {Type} → sql table fields
→ $(map (sql exp [] [] []) fields)→ dml
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An UPDATE command is formed from a choice of which table fields to leave alone and which to change,
along with an expression to use to compute the new value of each changed field and a WHERE clause. Note
that, in the table environment applied to expressions, the table being updated is hardcoded at the name T.
The parsing extension for UPDATE will elaborate all table-free field references to use constant table name T.

val update : unchanged ::: {Type} → changed :: {Type} → [changed ∼ unchanged]
⇒ $(map (sql exp [T = changed ++ unchanged] [] []) changed)
→ sql table (changed ++ unchanged)→ sql exp [T = changed ++ unchanged] [] [] bool→ dml

A DELETE command is formed from a table and a WHERE clause. The above use of T is repeated.

val delete : fields ::: {Type} → sql table fields→ sql exp [T = fields] [] [] bool→ dml

8.4.4 Sequences

SQL sequences are counters with concurrency control, often used to assign unique IDs. Ur/Web supports
them via a simple interface. The only way to create a sequence is with the sequence declaration form.

type sql sequence
val nextval : sql sequence→ transaction int
val setval : sql sequence→ int→ transaction unit

8.5 XML

Ur/Web’s library contains an encoding of XML syntax and semantic constraints. We make no effort to follow
the standards governing XML schemas. Rather, XML fragments are viewed more as values of ML datatypes,
and we only track which tags are allowed inside which other tags. The Ur/Web standard library encodes a
very loose version of XHTML, where it is very easy to produce documents which are invalid XHTML, but
which still display properly in all major browsers. The main purposes of the invariants that are enforced are
first, to provide some documentation about the places where it would make sense to insert XML fragments;
and second, to rule out code injection attacks and other abstraction violations related to HTML syntax.

The basic XML type family has arguments respectively indicating the context of a fragment, the fields
that the fragment expects to be bound on entry (and their types), and the fields that the fragment will
bind (and their types). Contexts are a record-based “poor man’s subtyping” encoding, with each possible
set of valid tags corresponding to a different context record. For instance, the context for the <td> tag is
[Dyn,MakeForm,Tr], to indicate nesting inside a <tr> tag with the ability to nest <form> and <dyn> tags (see
below). Contexts are maintained in a somewhat ad-hoc way; the only definitive reference for their meanings
is the types of the tag values in basis.urs. The arguments dealing with field binding are only relevant to
HTML forms.

con xml :: {Unit} → {Type} → {Type} → Type

We also have a type family of XML tags, indexed respectively by the record of optional attributes accepted
by the tag, the context in which the tag may be placed, the context required of children of the tag, which
form fields the tag uses, and which fields the tag defines.

con tag :: {Type} → {Unit} → {Unit} → {Type} → {Type} → Type

Literal text may be injected into XML as “CDATA.”

val cdata : ctx ::: {Unit} → use ::: {Type} → string→ xml ctx use []

There is also a function to insert the literal value of a character. Since Ur/Web uses the UTF-8 text
encoding, the cdata function is only sufficient to encode characters with ASCII codes below 128. Higher
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codes have alternate meanings in UTF-8 than in usual ASCII, so this alternate function should be used with
them.

val cdataChar : ctx ::: {Unit} → use ::: {Type} → char→ xml ctx use []

There is a function for producing an XML tree with a particular tag at its root.

val tag : attrsGiven ::: {Type} → attrsAbsent ::: {Type} → ctxOuter ::: {Unit} → ctxInner ::: {Unit}
→ useOuter ::: {Type} → useInner ::: {Type} → bindOuter ::: {Type} → bindInner ::: {Type}
→ [attrsGiven ∼ attrsAbsent]⇒ [useOuter ∼ useInner]⇒ [bindOuter ∼ bindInner]
⇒ css class
→ option (signal css class)
→ css style
→ option (signal css style)
→ $attrsGiven
→ tag (attrsGiven ++ attrsAbsent) ctxOuter ctxInner useOuter bindOuter
→ xml ctxInner useInner bindInner→ xml ctxOuter (useOuter ++ useInner) (bindOuter ++ bindInner)

Note that any tag may be assigned a CSS class, or left without a class by passing Basis.null as the first
value-level argument. This is the sole way of making use of the values produced by style declarations. The
function Basis.classes can be used to specify a list of CSS classes for a single tag. Stylesheets to assign
properties to the classes can be linked via URL’s with link tags. Ur/Web makes it easy to calculate upper
bounds on usage of CSS classes through program analysis, with the -css command-line flag.

Also note that two different arguments are available for setting CSS classes: the first, associated with
the class pseudo-attribute syntactic sugar, fixes the class of a tag for the duration of the tag’s life; while
the second, associated with the dynClass pseudo-attribute, allows the class to vary over the tag’s life. See
Section 8.6.3 for an introduction to the signal type family.

The third and fourth value-level arguments makes it possible to generate HTML style attributes, either
with fixed content (style attribute) or dynamic content (dynStyle pseudo-attribute).

Two XML fragments may be concatenated.

val join : ctx ::: {Unit} → use1 ::: {Type} → bind1 ::: {Type} → bind2 ::: {Type}
→ [use1 ∼ bind1]⇒ [bind1 ∼ bind2]
⇒ xml ctx use1 bind1 → xml ctx (use1 ++ bind1) bind2 → xml ctx use1 (bind1 ++ bind2)

Finally, any XML fragment may be updated to “claim” to use more form fields than it does.

val useMore : ctx ::: {Unit} → use1 ::: {Type} → use2 ::: {Type} → bind ::: {Type} → [use1 ∼ use2]
⇒ xml ctx use1 bind→ xml ctx (use1 ++ use2) bind

We will not list here the different HTML tags and related functions from the standard library. They
should be easy enough to understand from the code in basis.urs. The set of tags in the library is not yet
claimed to be complete for HTML standards. Also note that there is currently no way for the programmer
to add his own tags, without using the foreign function interface (Section 11).

Some tags support HTML5 data-* attributes, which in Ur/Web are encoded as a single attribute Data
with type data attrs encoding one or more attributes of this kind. See basis.urs for details. The usual
HTML5 syntax for these attributes is supported by the Ur/Web parser as syntactic sugar, and the same
mechanism is reused to support aria-* attributes.

One last useful function is for aborting any page generation, returning some XML as an error message.
This function takes the place of some uses of a general exception mechanism.

val error : t ::: Type→ xbody→ t

There is limited support for the HTML <meta> tag, with the following type used to control which names
are allowed.

type meta
val blessMeta : string→ meta
val checkMeta : string→ option meta

44



Configure the policy for meta names with the allow and deny .urp directives.

8.6 Client-Side Programming

Ur/Web supports running code on web browsers, via automatic compilation to JavaScript.
The concurrency model is cooperative multithreading. Like with, say, POSIX threads, which uses the

preemptive multithreading model, there may be multiple threads of control active at a time. However, unlike
with preemptive multithreading, the currently running thread gets to run interrupted until a well-defined
context-switch point. Specifically, four functions defined below are the context-switch points. They are sleep,
rpc, tryRpc, and recv. (We explain their purposes as we come to them below.) Additional functions added
via the foreign function interface might also have context-switching behavior. In any case, it is guaranteed
that a running thread “owns the processor” until it calls a context-switching function, at which time we may
switch to running a different thread instead.

This concurrency paradigm has many nice properties. For instance, there is almost never any need for
locking or other synchronization between threads.

Readers used to the standard JavaScript model may recognize this style as the natural one that we obtain
by imposing a thread-based perspective on top of the usual JavaScript callback-based API. Indeed, every
context-switching Ur/Web function is implemented with an underlying JavaScript call that asks for some
callback to be triggered when an event happens.

8.6.1 The Basics

All of the functions in this subsection are client-side only.
Clients can open alert and confirm dialog boxes, in the usual annoying JavaScript way.

val alert : string→ transaction unit
val confirm : string→ transaction bool

Any transaction may be run in a new thread with the spawn function.

val spawn : transaction unit→ transaction unit

The current thread can be paused for at least a specified number of milliseconds.

val sleep : int→ transaction unit

A few functions are available to registers callbacks for particular error events. Respectively, they are
triggered on calls to error, uncaught JavaScript exceptions, failure of remote procedure calls, the severance of
the connection serving asynchronous messages, or the occurrence of some other error with that connection. If
no handlers are registered for a kind of error, then a JavaScript alert() is used to announce its occurrence.
When one of these functions is called multiple times within a single page, all registered handlers are run
when appropriate events occur, with handlers run in the reverse of their registration order.

val onError : (xbody→ transaction unit)→ transaction unit
val onFail : (string→ transaction unit)→ transaction unit
val onConnectFail : transaction unit→ transaction unit
val onDisconnect : transaction unit→ transaction unit
val onServerError : (string→ transaction unit)→ transaction unit

There are also functions to register standard document-level event handlers.
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val onClick : (mouseEvent→ transaction unit)→ transaction unit
val onDblclick : (mouseEvent→ transaction unit)→ transaction unit
val onKeydown : (keyEvent→ transaction unit)→ transaction unit
val onKeypress : (keyEvent→ transaction unit)→ transaction unit
val onKeyup : (keyEvent→ transaction unit)→ transaction unit
val onMousedown : (mouseEvent→ transaction unit)→ transaction unit
val onMouseup : (mouseEvent→ transaction unit)→ transaction unit

Versions of standard JavaScript functions are provided that event handlers may call to mask default
handling or prevent bubbling of events up to parent DOM nodes, respectively.

val preventDefault : transaction unit
val stopPropagation : transaction unit

Finally, here is an HTML tag to leave a marker in the <head> of a document asking for some side-effecting
code to be run. This pattern is much less common in Ur/Web applications than in normal HTML/JavaScript
applications; see Section 8.6.3 for the more idiomatic, functional way of manipulating the visible page.

val script : unit→ tag [Code = transaction unit] head [] [] []

Note that the Ur/Web version of <script> is used like <script code={...}/>, rather than <script>...</script>.

8.6.2 Node IDs

There is an abstract type of node IDs that may be assigned to id attributes of most HTML tags.

type id
val fresh : transaction id

The fresh function is allowed on both server and client, but there is no other way to create IDs, which
includes lack of a way to force an ID to match a particular string. The main semantic importance of IDs
within Ur/Web is in uses of the HTML <label> tag. IDs play a much more central role in mainstream
JavaScript programming, but Ur/Web uses a very different model to enable changes to particular nodes of
a page tree, as the next manual subsection explains. IDs may still be useful in interfacing with JavaScript
code (for instance, through Ur/Web’s FFI).

One further use of IDs is as handles for requesting that focus be given to specific tags.

val giveFocus : id→ transaction unit

8.6.3 Functional-Reactive Page Generation

Most approaches to “AJAX”-style coding involve imperative manipulation of the DOM tree representing
an HTML document’s structure. Ur/Web follows the functional-reactive approach instead. Programs may
allocate mutable sources of arbitrary types, and an HTML page is effectively a pure function over the latest
values of the sources. The page is not mutated directly, but rather it changes automatically as the sources
are mutated.

More operationally, you can think of a source as a mutable cell with facilities for subscription to change
notifications. That level of detail is hidden behind a monadic facility to be described below. First, there are
three primitive operations for working with sources just as if they were ML ref cells, corresponding to ML’s
ref, :=, and ! operations.

con source :: Type→ Type
val source : t ::: Type→ t→ transaction (source t)
val set : t ::: Type→ source t→ t→ transaction unit
val get : t ::: Type→ source t→ transaction t
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Only source creation and setting are supported server-side, as a convenience to help in setting up a page,
where you may wish to allocate many sources that will be referenced through the page. All server-side storage
of values inside sources uses string serializations of values, while client-side storage uses normal JavaScript
values.

Pure functions over arbitrary numbers of sources are represented in a monad of signals, which may only
be used in client-side code. This is presented to the programmer in the form of a monad signal, each of whose
values represents (conceptually) some pure function over all sources that may be allocated in the course of
program execution. A monad operation signal denotes the identity function over a particular source. By
using signal on a source, you implicitly subscribe to change notifications for that source. That is, your signal
will automatically be recomputed as that source changes. The usual monad operators make it possible to
build up complex signals that depend on multiple sources; automatic updating upon source-value changes still
happens automatically. There is also an operator for computing a signal’s current value within a transaction.

con signal :: Type→ Type
val signal monad : monad signal
val signal : t ::: Type→ source t→ signal t
val current : t ::: Type→ signal t→ transaction t

A reactive portion of an HTML page is injected with a dyn tag, which has a signal-valued attribute Signal.

val dyn : ctx ::: {Unit} → use ::: {Type} → bind ::: {Type} → [ctx ∼ [Dyn]]⇒ unit
→ tag [Signal = signal (xml ([Dyn] ++ ctx) use bind)] ([Dyn] ++ ctx) [] use bind

The semantics of <dyn> tags is somewhat subtle. When the signal associated with such a tag changes
value, the associated subtree of the HTML page is recreated. Some properties of the subtree, such as
attributes and client-side widget values, are specified explicitly in the signal value, so these may be counted
on to remain the same after recreation. Other properties, like focus and cursor position within textboxes,
are not specified by signal values, and these properties will be reset upon subtree regeneration. Furthermore,
user interaction with widgets may not work properly during regeneration. For instance, clicking a button
while it is being regenerated may not trigger its onclick event code.

Currently, the only way to avoid undesired resets is to avoid regeneration of containing subtrees. There
are two main strategies for achieving that goal. First, when changes to a subtree can be confined to CSS
classes of tags, the dynClass pseudo-attribute may be used instead (see Section 8.5), as it does not regenerate
subtrees. Second, a single <dyn> tag may be broken into multiple tags, in a way that makes finer-grained
dependency structure explicit. This latter strategy can avoid “spurious” regenerations that are not actually
required to achieve the intended semantics.

Transactions can be run on the client by including them in attributes like the Onclick attribute of button,
and GUI widgets like ctextbox have Source attributes that can be used to connect them to sources, so that
their values can be read by code running because of, e.g., an Onclick event. It is also possible to create an
“active” HTML fragment that runs a transaction to determine its content, possibly allocating some sources
in the process:

val active : unit→ tag [Code = transaction xbody] body [] [] []

8.6.4 Remote Procedure Calls

Any function call may be made a client-to-server “remote procedure call” if the function being called needs
no features that are only available to client code. To make a function call an RPC, pass that function call
as the argument to Basis.rpc:

val rpc : t ::: Type→ transaction t→ transaction t

There is an alternate form that uses None to indicate that an error occurred during RPC processing,
rather than raising an exception to abort this branch of control flow.
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val tryRpc : t ::: Type→ transaction t→ transaction (option t)

8.6.5 Asynchronous Message-Passing

To support asynchronous, “server push” delivery of messages to clients, any client that might need to receive
an asynchronous message is assigned a unique ID. These IDs may be retrieved both on the client and on the
server, during execution of code related to a client.

type client
val self : transaction client

Channels are the means of message-passing. Each channel is created in the context of a client and
belongs to that client; no other client may receive the channel’s messages. Note that here client has a
technical Ur/Web meaning so that it describes only single page views, so a user following a traditional link
within an application will remove the ability for any code to receive messages on the channels associated
with the previous client. Each channel type includes the type of values that may be sent over the channel.
Sending and receiving are asynchronous, in the sense that a client need not be ready to receive a message
right away. Rather, sent messages may queue up, waiting to be processed.

con channel :: Type→ Type
val channel : t ::: Type→ transaction (channel t)
val send : t ::: Type→ channel t→ t→ transaction unit
val recv : t ::: Type→ channel t→ transaction t

The channel and send operations may only be executed on the server, and recv may only be executed on
a client. Neither clients nor channels may be passed as arguments from clients to server-side functions, so
persistent channels can only be maintained by storing them in the database and looking them up using the
current client ID or some application-specific value as a key.

Clients and channels live only as long as the web browser page views that they are associated with. When
a user surfs away, his client and its channels will be garbage-collected, after that user is not heard from for
the timeout period. Garbage collection deletes any database row that contains a client or channel directly.
Any reference to one of these types inside an option is set to None instead. Both kinds of handling have the
flavor of weak pointers, and that is a useful way to think about clients and channels in the database.

Note: Currently, there are known concurrency issues with multi-threaded applications that employ
message-passing on top of database engines that don’t support true serializable transactions. Postgres
(versions 9.1 and up) is the only supported engine that does this properly.

9 Ur/Web Syntax Extensions

Ur/Web features some syntactic shorthands for building values using the functions from the last section.
This section sketches the grammar of those extensions. We write spans of syntax inside brackets to indicate
that they are optional.
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9.1 SQL

9.1.1 Table Declarations

table declarations may include constraints, via these grammar rules.

Declarations d ::= table x : c [pk[, ]] cts | view x = V
Primary key constraints pk ::= PRIMARY KEY K

Keys K ::= f | (f, (f, )+) | {{e}}
Constraint sets cts ::= CONSTRAINTf ct | cts, cts | {{e}}

Constraints ct ::= UNIQUE K | CHECK E
| FOREIGN KEY K REFERENCES F (K) [ON DELETE pr] [ON UPDATE pr]

Foreign tables F ::= x | {{e}}
Propagation modes pr ::= NO ACTION | RESTRICT | CASCADE | SET NULL

View expressions V ::= Q | {e}

A signature item table x : c is actually elaborated into two signature items: con x hidden constraints ::
{{Unit}} and val x : sql table c x hidden constraints. This is appropriate for common cases where client
code doesn’t care which keys a table has. It’s also possible to include constraints after a table signa-
ture item, with the same syntax as for table declarations. This may look like dependent typing, but
it’s just a convenience. The constraints are type-checked to determine a constructor u to include in
val x : sql table c (u ++ x hidden constraints), and then the expressions are thrown away. Nonetheless, it
can be useful for documentation purposes to include table constraint details in signatures. Note that the au-
tomatic generation of x hidden constraints leads to a kind of free subtyping with respect to which constraints
are defined.

9.1.2 Queries

Queries Q are added to the rules for expressions e.

Queries Q ::= (q [ORDER BY O] [LIMIT N ] [OFFSET N ])
Pre-queries q ::= SELECT [DISTINCT] P FROM F,+ [WHERE E] [GROUP BY p,+ ] [HAVING E]

| q R q | {{{e}}}
Relational operators R ::= UNION | INTERSECT | EXCEPT

ORDER BY items O ::= RANDOM[()] | Ê [o] | Ê [o], O | {{{e}}}
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Projections P ::= ∗ all columns
p,+ particular columns

Pre-projections p ::= t.f one column from a table
t.{{c}} a record of columns from a table (of kind {Type})
t.∗ all columns from a table

Ê [AS f ] expression column
Table names t ::= x constant table name (automatically capitalized)

X constant table name
{{c}} computed table name (of kind Name)

Column names f ::= X constant column name
{c} computed column name (of kind Name)

Tables T ::= x table variable, named locally by its own capitalization
x AS X table variable, with local name
x AS {c} table variable, with computed local name
{{e}} AS X computed table expression, with local name
{{e}} AS {c} computed table expression, with computed local name

FROM items F ::= T | {{e}} | F J JOIN F ON E
| F CROSS JOIN F
| (Q) AS X | (Q) AS {c}
| ({{e}}) AS t

Joins J ::= [INNER]
| [LEFT | RIGHT | FULL] [OUTER]

SQL expressions E ::= t.f column references
X named expression references
{[e]} injected native Ur expressions
{e} computed expressions, probably using sql exp directly
TRUE | FALSE boolean constants
` primitive type literals
NULL null value (injection of None)
E IS NULL nullness test
COALESCE(E,E) take first non-null value
n nullary operators
u E unary operators
E b E binary operators
COUNT(∗) count number of rows
a(E) other aggregate function
IF E THEN E ELSE E conditional
(Q) subquery (must return a single expression column)
(E) explicit precedence

Nullary operators n ::= CURRENT TIMESTAMP
Unary operators u ::= NOT
Binary operators b ::= AND | OR |=|6=|<|≤|>|≥| LIKE

Aggregate functions a ::= COUNT | AVG | SUM | MIN | MAX
Directions o ::= ASC | DESC | {e}

SQL integer N ::= n | {e}
Windowable expressions Ê ::= E

w [OVER ( (Postgres only)
[PARTITION BY E]
[ORDER BY O])]

Window function w ::= RANK()
COUNT(∗)
a(E)
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Additionally, an SQL expression may be inserted into normal Ur code with the syntax (SQL E) or
(WHERE E). Similar shorthands exist for other nonterminals, with the prefix FROM for FROM items and
SELECT1 for pre-queries.

Unnamed expression columns in SELECT clauses are assigned consecutive natural numbers, starting with
1. Any expression in a p position that is enclosed in parentheses is treated as an expression column, rather
than a column pulled directly out of a table, even if it is only a field projection. (This distinction affects the
record type used to describe query results.)

9.1.3 DML

DML commands D are added to the rules for expressions e.

Commands D ::= (INSERT INTO TE (f,+ ) VALUES (E,+ ))
(UPDATE TE SET (f = E, )+ WHERE E)
(DELETE FROM TE WHERE E)

Table expressions TE ::= x | {{e}}

Inside UPDATE and DELETE commands, lone variables X are interpreted as references to columns of the
implicit table T, rather than to named expressions.

9.2 XML

XML fragments L are added to the rules for expressions e.

XML fragments L ::= <xml/> | <xml>l∗</xml>
XML pieces l ::= text cdata

<g/> tag with no children
<g>l∗</x> tag with children
{e} computed XML fragment
{[e]} injection of an Ur expression, via the Top.txt function

Tag g ::= h (x[= v])∗

Tag head h ::= x tag name
h{c} constructor parameter

Attribute value v ::= ` literal value
{e} computed value

When the optional = v is omitted in an XML attribute, the attribute is assigned value True in Ur/Web,
and it is rendered to HTML merely as including the attribute name without a value. If such a Boolean
attribute is manually set to value False, then it is omitted altogether in generating HTML.

Further, there is a special convenience and compatibility form for setting CSS classes of tags. If a class

attribute has a value that is a string literal, the literal is parsed in the usual HTML way and replaced
with calls to appropriate Ur/Web combinators. Any dashes in the text are replaced with underscores to
determine Ur identifiers. The same desugaring can be accessed in a normal expression context by calling the
pseudo-function CLASS on a string literal.

Similar support is provided for style attributes. Normal CSS syntax may be used in string literals that
are style attribute values, and the desugaring may be accessed elsewhere with the pseudo-function STYLE.

10 The Structure of Web Applications

A web application is built from a series of modules, with one module, the last one appearing in the .urp file,
designated as the main module. The signature of the main module determines the URL entry points to the
application. Such an entry point should have type t1→ . . .→ tn→ transaction page, for any integer n ≥ 0,

51



where page is a type synonym for top-level HTML pages, defined in Basis. If such a function is at the top
level of main module M , with n = 0, it will be accessible at URI /M/f, and so on for more deeply nested
functions, as described in Section 12.10 below. See Section 3.1 for information on the prefix and rewrite

url directives, which can be used to rewrite the default URIs of different entry point functions. The final
URL of a function is its default module-based URI, with rewrite url rules applied, and with the prefix

prepended. Arguments to an entry-point function are deserialized from the part of the URI following f.
Elements of modules beside the main module, including page handlers, will only be included in the final

application if they are transitive dependencies of the handlers in the main module.
Normal links are accessible via HTTP GET, which the relevant standard says should never cause side

effects. To export a page which may cause side effects, accessible only via HTTP POST, include one argument
of the page handler of type Basis.postBody. When the handler is called, this argument will receive a value that
can be deconstructed into a MIME type (with Basis.postType) and payload (with Basis.postData). This kind
of handler should not be used with forms that exist solely within Ur/Web apps; for these, use Ur/Web’s built-
in support, as described below. It may still be useful to use Basis.postBody with form requests submitted by
code outside an Ur/Web app. For such cases, the function Top.postFields : postBody → list (string × string)
may be useful, breaking a POST body of type application/x-www-form-urlencoded into its name-value
pairs.

Any normal page handler may also include arguments of type option Basis.queryString, which will be
handled specially. Rather than being deserialized from the current URI, such an argument is passed the
whole query string that the handler received. The string may be analyzed by calling Basis.show on it. A
handler of this kind may be passed as an argument to Basis.effectfulUrl to generate a URL to a page that
may be used as a “callback” by an external service, such that the handler is allowed to cause side effects.

When the standalone web server receives a request for a known page, it calls the function for that page,
“running” the resulting transaction to produce the page to return to the client. Pages link to other pages
with the link attribute of the a HTML tag. A link has type transaction page, and the semantics of a link
are that this transaction should be run to compute the result page, when the link is followed. Link targets
are assigned URL names in the same way as top-level entry points.

HTML forms are handled in a similar way. The action attribute of a submit form tag takes a value of type
$use → transaction page, where use is a kind-{Type} record of the form fields used by this action handler.
Action handlers are assigned URL patterns in the same way as above.

For both links and actions, direct arguments and local variables mentioned implicitly via closures are
automatically included in serialized form in URLs, in the order in which they appear in the source code.
Such serialized values may only be drawn from a limited set of types, and programs will fail to compile when
the (implicit or explicit) arguments of page handler functions involve disallowed types. (Keep in mind that
every free variable of a function is an implicit argument if it was not defined at the top level of a module.)
For instance:

• Functions are disallowed, since there is no obvious way to serialize them safely.

• XML fragments are disallowed, since it is unclear how to check client-provided XML to be sure it
doesn’t break the HTML invariants of the application (for instance, by mutating the DOM in the
conventional way, interfering with Ur/Web’s functional-reactive regime).

• Blobs (“files”) are disallowed, since they can easily have very large serializations that could not fit
within most web servers’ URL size limits. (And you probably don’t want to be serializing, e.g., image
files in URLs, anyway.)

Ur/Web programs generally mix server- and client-side code in a fairly transparent way. The one im-
portant restriction is that mixed client-server code must encapsulate all server-side pieces within named
functions. This is because execution of such pieces will be implemented by explicit calls to the remote web
server, and it is useful to get the programmer’s help in designing the interface to be used. For example, this
makes it easier to allow a client running an old version of an application to continue interacting with a server
that has been upgraded to a new version, if the programmer took care to keep the interfaces of all of the
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old remote calls the same. The functions implementing these services are assigned names in the same way
as normal web entry points, by using module structure.

The HTTP standard suggests that GET requests only be used in ways that generate no side effects. Side
effecting operations should use POST requests instead. The Ur/Web compiler enforces this rule strictly, via
a simple conservative program analysis. Any page that may have a side effect must be accessed through a
form, all of which use POST requests, or via a direct call to a page handler with some argument of type
Basis.postBody. A page is judged to have a side effect if its code depends syntactically on any of the side-
effecting, server-side FFI functions. Links, forms, and most client-side event handlers are not followed during
this syntactic traversal, but <body onload={...}> handlers are examined, since they run right away and
could just as well be considered parts of main page handlers.

Ur/Web includes a kind of automatic protection against cross site request forgery attacks. Whenever
any page execution can have side effects and can also read at least one cookie value, all cookie values must
be signed cryptographically, to ensure that the user has come to the current page by submitting a form on
a real page generated by the proper server. Signing and signature checking are inserted automatically by
the compiler. This prevents attacks like phishing schemes where users are directed to counterfeit pages with
forms that submit to your application, where a user’s cookies might be submitted without his knowledge,
causing some undesired side effect.

10.1 Tasks

In many web applications, it’s useful to run code at points other than requests from browsers. Ur/Web’s
task mechanism facilitates this. A type family of task kinds is in the standard library:

con task kind :: Type→ Type
val initialize : task kind unit
val clientLeaves : task kind client
val periodic : int→ task kind unit

A task kind names a particular extension point of generated applications, where the type parameter of
a task kind describes which extra input data is available at that extension point. Add task code with the
special declaration form task e1 = e2, where e1 is a task kind with data τ , and e2 is a function from τ to
transaction unit.

The currently supported task kinds are:

• initialize: Code that is run when the application starts up.

• clientLeaves: Code that is run for each client that the runtime system decides has surfed away. When
a request that generates a new client handle is aborted, that handle will still eventually be passed to
clientLeaves task code, even though the corresponding browser was never informed of the client handle’s
existence. In other words, in general, clientLeaves handlers will be called more times than there are
actual clients.

• periodic n: Code that is run when the application starts up and then every n seconds thereafter.

11 The Foreign Function Interface

It is possible to call your own C and JavaScript code from Ur/Web applications, via the foreign function
interface (FFI). The starting point for a new binding is a .urs signature file that presents your external
library as a single Ur/Web module (with no nested modules). Compilation conventions map the types and
values that you use into C and/or JavaScript types and values.

It is most convenient to encapsulate an FFI binding with a new .urp file, which applications can include
with the library directive in their own .urp files. A number of directives are likely to show up in the
library’s project file.
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• clientOnly Module.ident registers a value as being allowed only in client-side code.

• clientToServer Module.ident declares a type as OK to marshal between clients and servers. By
default, abstract FFI types are not allowed to be marshalled, since your library might be maintaining
invariants that the simple serialization code doesn’t check.

• effectful Module.ident registers a function that can have side effects. This is the default for
transaction-based types, and, actually, this directive is mostly present for legacy compatibility rea-
sons, since it used to be required explicitly for each transactional function.

• ffi FILE.urs names the file giving your library’s signature. You can include multiple such files in a
single .urp file, and each file mod.urp defines an FFI module Mod.

• include FILE requests inclusion of a C header file.

• jsFile FILE requests inclusion of a JavaScript source file.

• jsFunc Module.ident=name gives a mapping from an Ur name for a value to a JavaScript name.

• link FILE requests that FILE be linked into applications. It should be a C object or library archive
file, and you are responsible for generating it with your own build process.

• script URL requests inclusion of a JavaScript source file within application HTML.

• serverOnly Module.ident registers a value as being allowed only in server-side code.

11.1 Writing C FFI Code

C source files connecting to the Ur/Web FFI should include urweb.h, and C++ source files should include
urweb_cpp.h.

A server-side FFI type or value Module.ident must have a corresponding type or value definition
uw_Module_ident in C code. With the current Ur/Web version, it’s not generally possible to work with
Ur records or complex datatypes in C code, but most other kinds of types are fair game.

• Primitive types defined in Basis are themselves using the standard FFI interface, so you may refer to
them like uw_Basis_t. See include/urweb/types.h for their definitions.

• Enumeration datatypes, which have only constructors that take no arguments, should be defined using
C enums. The type is named as for any other type identifier, and each constructor c gets an enumeration
constant named uw_Module_c.

• A datatype dt (such as Basis.option) that has one non-value-carrying constructor NC and one value-
carrying constructor C gets special treatment. Where T is the type of C’s argument, and where we
represent T as t in C, we represent NC with NULL. The representation of C depends on whether we’re
sure that we don’t need to use NULL to represent t values; this condition holds only for strings and
complex datatypes. For such types, C v is represented with the C encoding of v, such that the
translation of dt is t. For other types, C v is represented with a pointer to the C encoding of v, such
that the translation of dt is t*.

• Ur/Web involves many types of program syntax, such as for HTML and SQL code. All of these types
are implemented with normal C strings, and you may take advantage of that encoding to manipulate
code as strings in C FFI code. Be mindful that, in writing such code, it is your responsibility to
maintain the appropriate code invariants, or you may reintroduce the code injection vulnerabilities
that Ur/Web rules out. The most convenient way to extend Ur/Web with functions that, e.g., use
natively unsupported HTML tags is to generate the HTML code with the FFI.
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The C FFI version of a Ur function with type T1 -> ... -> TN -> R or T1 -> ... -> TN -> transaction

R has a C prototype like R uw_Module_ident(uw_context, T1, ..., TN). Only functions with types of the
second form may have side effects. uw_context is the type of state that persists across handling a client
request. Many functions that operate on contexts are prototyped in include/urweb/urweb_cpp.h. Most
should only be used internally by the compiler. A few are useful in general FFI implementation:

• void uw_error(uw_context, failure_kind, const char *fmt, ...);

Abort the current request processing, giving a printf-style format string and arguments for gener-
ating an error message. The failure_kind argument can be FATAL, to abort the whole execution;
BOUNDED_RETRY, to try processing the request again from the beginning, but failing if this happens too
many times; or UNLIMITED_RETRY, to repeat processing, with no cap on how many times this can recur.

All pointers to the context-local heap (see description below of uw_malloc()) become invalid at the
start and end of any execution of a main entry point function of an application. For example, if the
request handler is restarted because of a uw_error() call with BOUNDED_RETRY or for any other reason,
it is unsafe to access any local heap pointers that may have been stashed somewhere beforehand.

• void uw_set_error_message(uw_context, const char *fmt, ...);

This simpler form of uw_error() saves an error message without immediately aborting execution.

• void uw_push_cleanup(uw_context, void (*func)(void *), void *arg);

void uw_pop_cleanup(uw_context);

Manipulate a stack of actions that should be taken if any kind of error condition arises. Calling the
“pop” function both removes an action from the stack and executes it. It is a bug to let a page request
handler finish successfully with unpopped cleanup actions.

Pending cleanup actions aren’t intended to have any complex relationship amongst themselves, so,
upon request handler abort, pending actions are executed in first-in-first-out order.

• void *uw_malloc(uw_context, size_t);

A version of malloc() that allocates memory inside a context’s heap, which is managed with region
allocation. Thus, there is no uw_free(), but you need to be careful not to keep ad-hoc C pointers to
this area of memory. In general, uw_malloc()ed memory should only be used in ways compatible with
the computation model of pure Ur. This means it is fine to allocate and return a value that could just
as well have been built with core Ur code. In contrast, it is almost never safe to store uw_malloc()ed
pointers in global variables, including when the storage happens implicitly by registering a callback
that would take the pointer as an argument.

For performance and correctness reasons, it is usually preferable to use uw_malloc() instead of
malloc(). The former manipulates a local heap that can be kept allocated across page requests,
while the latter uses global data structures that may face contention during concurrent execution.
However, we emphasize again that uw_malloc() should never be used to implement some logic that
couldn’t be implemented trivially by a constant-valued expression in Ur.

• typedef void (*uw_callback)(void *);

typedef void (*uw_callback_with_retry)(void *, int will_retry);

int uw_register_transactional(uw_context, void *data, uw_callback commit,

uw_callback rollback, uw_callback_with_retry free);
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All side effects in Ur/Web programs need to be compatible with transactions, such that any set of
actions can be undone at any time. Thus, you should not perform actions with non-local side effects
directly; instead, register handlers to be called when the current transaction is committed or rolled
back. The arguments here give an arbitary piece of data to be passed to callbacks, a function to call
on commit, a function to call on rollback, and a function to call afterward in either case to clean up
any allocated resources. A rollback handler may be called after the associated commit handler has
already been called, if some later part of the commit process fails. A free handler is told whether the
runtime system expects to retry the current page request after rollback finishes. The return value of
uw_register_transactional() is 0 on success and nonzero on failure (where failure currently only
happens when exceeding configured limits on number of transactionals).

Any of the callbacks may be NULL. To accommodate some stubbornly non-transactional real-world
actions like sending an e-mail message, Ur/Web treats NULL rollback callbacks specially. When a
transaction commits, all commit actions that have non-NULL rollback actions are tried before any
commit actions that have NULL rollback actions. Furthermore, an SQL COMMIT is also attempted in
between the two phases, so the nicely transactional actions have a chance to influence whether data are
committed to the database, while NULL-rollback actions only get run in the first place after committing
data. The reason for all this is that it is expected that concurrency interactions will cause database
commits to fail in benign ways that call for transaction restart. A truly non-undoable action should
only be run after we are sure the database transaction will commit.

When a request handler ends with multiple pending transactional actions, their handlers are run in a
first-in-last-out stack-like order, wherever the order would otherwise be ambiguous.

It is not safe for any of these handlers to access a context-local heap through a pointer returned
previously by uw_malloc(), nor should any new calls to that function be made. Think of the context-
local heap as meant for use by the Ur/Web code itself, while transactional handlers execute after the
Ur/Web code has finished.

A handler may signal an error by calling uw_set_error_message(), but it is not safe to call uw_error()
from a handler. Signaling an error in a commit handler will cause the runtime system to switch to
aborting the transaction, immediately after the current commit handler returns.

• void *uw_get_global(uw_context, char *name);

void uw_set_global(uw_context, char *name, void *data, uw_callback free);

Different FFI-based extensions may want to associate their own pieces of data with contexts. The
global interface provides a way of doing that, where each extension must come up with its own unique
key. The free argument to uw_set_global() explains how to deallocate the saved data. It is never
safe to store uw_malloc()ed pointers in global variable slots.

11.2 Writing JavaScript FFI Code

JavaScript is dynamically typed, so Ur/Web type definitions imply no JavaScript code. The JavaScript
identifier for each FFI function is set with the jsFunc directive. Each identifier can be defined in any
JavaScript file that you ask to include with the script directive, and one easy way to get code included is
with the jsFile directive.

In contrast to C FFI code, JavaScript FFI functions take no extra context argument. Their argument
lists are as you would expect from their Ur types. Only functions whose ranges take the form transaction

T should have side effects; the JavaScript “return type” of such a function is T. Here are the conventions for
representing Ur values in JavaScript.

• Integers, floats, strings, characters, and booleans are represented in the usual JavaScript way.
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• Ur functions are represented in an unspecified way. This means that you should not rely on any details
of function representation. Named FFI functions are represented as JavaScript functions with as many
arguments as their Ur types specify. To call a non-FFI function f on argument x, run execF(f, x). A
normal JavaScript function may also be used in a position where the Ur/Web runtime system expects
an Ur/Web function.

• An Ur record is represented with a JavaScript record, where Ur field name N translates to JavaScript
field name _N. An exception to this rule is that the empty record is encoded as null.

• option-like types receive special handling similar to their handling in C. The “None” constructor is
null, and a use of the “Some” constructor on a value v is either v, if the underlying type doesn’t need
to use null; or {v:v} otherwise.

• Any other datatypes represent a non-value-carrying constructor C as "C" and an application of a
constructor C to value v as {n:"C", v:v}. This rule only applies to datatypes defined in FFI module
signatures; the compiler is free to optimize the representations of other, non-option-like datatypes in
arbitrary ways.

• As in the C FFI, all abstract types of program syntax are implemented with strings in JavaScript.

• A value of Ur type transaction t is represented in the same way as for unit -> t. (Note that FFI
functions skip this extra level of function encoding, which only applies to functions defined in Ur/Web.)

It is possible to write JavaScript FFI code that interacts with the functional-reactive structure of a
document. Here is a quick summary of some of the simpler functions to use; descriptions of fancier stuff may
be added later on request (and such stuff should be considered “undocumented features” until then).

• Sources should be treated as an abstract type, manipulated via:

– sc(v), to create a source initialized to v

– sg(s), to retrieve the current value of source s

– sv(s, v), to set source s to value v

• Signals should be treated as an abstract type, manipulated via:

– sr(v) and sb(s, f), the “return” and “bind” monad operators, respectively

– ss(s), to produce the signal corresponding to source s

– scur(s), to get the current value of signal s

• The behavior of the <dyn> pseudo-tag may be mimicked by following the right convention in a piece
of HTML source code with a type like xbody. Such a piece of source code may be encoded with a
JavaScript string. To insert a dynamic section, include a <script> tag whose content is just a call
dyn(pnode, s). The argument pnode specifies what the relevant enclosing parent tag is. Use value
"tr" when the immediate parent is <tr>, use "table" when the immediate parent is <table>, and
use "span" otherwise. The argument s is a string-valued signal giving the HTML code to be inserted
at this point. As with the usual <dyn> tag, that HTML subtree is automatically updated as the value
of s changes.

• There is only one supported method of taking HTML values generated in Ur/Web code and adding
them to the DOM in FFI JavaScript code: call setInnerHTML(node, html) to add HTML content
html within DOM node node. Merely running node.innerHTML = html is not guaranteed to get
the job done, though programmers familiar with JavaScript will probably find it useful to think of
setInnerHTML as having this effect. The unusual idiom is required because Ur/Web uses a nonstandard
representation of HTML, to support infinite nesting of code that may generate code that may generate
code that.... The node value must already be in the DOM tree at the point when setInnerHTML is
called, because some plumbing must be set up to interact sensibly with <dyn> tags.
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• It is possible to use the more standard “IDs and mutation” style of JavaScript coding, though that
style is unidiomatic for Ur/Web and should be avoided wherever possible. Recall the abstract type id
and its constructor fresh, which can be used to generate new unique IDs in Ur/Web code. Values of
this type are represented as strings in JavaScript, and a function fresh() is available to generate new
unique IDs. Application-specific ID generation schemes may cause bad interactions with Ur/Web code
that also generates IDs, so the recommended approach is to produce IDs only via calls to fresh().
FFI code shouldn’t depend on the ID generation scheme (on either server side or client side), but it
is safe to include these IDs in tag attributes (in either server-side or client-side code) and manipulate
the associated DOM nodes in the standard way (in client-side code). Be forewarned that this kind
of imperative DOM manipulation may confuse the Ur/Web runtime system and interfere with proper
behavior of tags like <dyn>!

11.3 Introducing New HTML Tags

FFI modules may introduce new tags as values with Basis.tag types. See basis.urs for examples of how
tags are declared. The identifier of a tag value is used as its rendering in HTML. The Ur/Web syntax sugar
for XML literals desugars each use of a tag into a reference to an identifier with the same name. There is no
need to provide implementations (i.e., in C or JavaScript code) for such identifiers.

The onus is on the coder of a new tag’s interface to think about consequences for code injection attacks,
messing with the DOM in ways that may break Ur/Web reactive programming, etc.

11.4 The Less Safe FFI

An alternative interface is provided for declaring FFI functions inline within normal Ur/Web modules. This
facility must be opted into with the lessSafeFfi .urp directive, since it breaks a crucial property, allowing
code in a .ur file to break basic invariants of the Ur/Web type system. Without this option, one only needs
to audit .urp files to be sure an application obeys the type-system rules. The alternative interface may
be more convenient for such purposes as declaring an FFI function typed in terms of some type local to a
module.

When the less safe mode is enabled, declarations like this one are accepted, at the top level of a .ur file:

ffi foo : int -> int

Now foo is available as a normal function. If called in server-side code, and if the above declaration
appeared in bar.ur, the C function will be linked as uw_Bar_foo(). It is also possible to declare an
FFI function to be implemented in JavaScript, using a general facility for including modifiers in an FFI
declaration. The modifiers appear before the colon, separated by spaces. Here are the available ones, which
have the same semantics as corresponding .urp directives.

• effectful

• benignEffectful

• clientOnly

• serverOnly

• jsFunc "putJsFuncNameHere"

When no jsFunc directive is present, the function is assumed to map to a JavaScript function of the
same name, if used in a client-side context.
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12 Compiler Phases

The Ur/Web compiler is unconventional in that it relies on a kind of heuristic compilation. Not all valid
programs will compile successfully. Informally, programs fail to compile when they are “too higher order.”
Compiler phases do their best to eliminate different kinds of higher order-ness, but some programs just won’t
compile. This is a trade-off for producing very efficient executables. Compiled Ur/Web programs use native
C representations and require no garbage collection. Also, this warning only applies to server-side code, as
client-side code runs in a normal JavaScript environment with garbage collection.

In this section, we step through the main phases of compilation, noting what consequences each phase
has for effective programming.

12.1 Parse

The compiler reads a .urp file, figures out which .urs and .ur files it references, and combines them all into
what is conceptually a single sequence of declarations in the core language of Section 4.2.

12.2 Elaborate

This is where type inference takes place, translating programs into an explicit form with no more wildcards.
This phase is the most likely source of compiler error messages.

Those crawling through the compiler source will also want to be aware of another compiler phase, Explify,
that occurs immediately afterward. This phase just translates from an AST language that includes unification
variables to a very similar language that doesn’t; all variables should have been determined by the end of
Elaborate, anyway. The new AST language also drops some features that are used only for static checking
and that have no influence on runtime behavior, like disjointness constraints.

12.3 Unnest

Named local function definitions are moved to the top level, to avoid the need to generate closures.

12.4 Corify

Module system features are compiled away, through inlining of functor definitions at application sites. Af-
terward, most abstraction boundaries are broken, facilitating optimization.

12.5 Especialize

Functions are specialized to particular argument patterns. This is an important trick for avoiding the need
to maintain any closures at runtime. Currently, specialization only happens for prefixes of a function’s full
list of parameters, so you may need to take care to put arguments of function types before other arguments.
The optimizer will not be effective enough if you use arguments that mix functions and values that must be
calculated at run-time. For instance, a tuple of a function and an integer counter would not lead to successful
code generation; these should be split into separate arguments via currying.

12.6 Untangle

Remove unnecessary mutual recursion, splitting recursive groups into strongly connected components.

12.7 Shake

Remove all definitions not needed to run the page handlers that are visible in the signature of the last module
listed in the .urp file.
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12.8 Rpcify

Pieces of code are determined to be client-side, server-side, neither, or both, by figuring out which standard
library functions might be needed to execute them. Calls to server-side functions (e.g., query) within mixed
client-server code are identified and replaced with explicit remote calls. Some mixed functions may be
converted to continuation-passing style to facilitate this transformation.

12.9 Untangle, Shake

Repeat these simplifications.

12.10 Tag

Assign a URL name to each link and form action. It is important that these links and actions are written
as applications of named functions, because such names are used to generate URL patterns. A URL pattern
has a name built from the full module path of the named function, followed by the function name, with all
pieces separated by slashes. The path of a functor application is based on the name given to the result,
rather than the path of the functor itself.

12.11 Reduce

Apply definitional equality rules to simplify the program as much as possible. This effectively includes
inlining of every non-recursive definition.

12.12 Unpoly

This phase specializes polymorphic functions to the specific arguments passed to them in the program. If
the program contains real polymorphic recursion, Unpoly will be insufficient to avoid later error messages
about too much polymorphism.

12.13 Specialize

Replace uses of parameterized datatypes with versions specialized to specific parameters. As for Unpoly,
this phase will not be effective enough in the presence of polymorphic recursion or other fancy uses of
impredicative polymorphism.

12.14 Shake

Here the compiler repeats the earlier Shake phase.

12.15 Monoize

Programs are translated to a new intermediate language without polymorphism or non-Type constructors.
Error messages may pop up here if earlier phases failed to remove such features.

This is the stage at which concrete names are generated for cookies, tables, and sequences. They are
named following the same convention as for links and actions, based on module path information saved from
earlier stages. Table and sequence names separate path elements with underscores instead of slashes, and
they are prefixed by uw_.

12.16 MonoOpt

Simple algebraic laws are applied to simplify the program, focusing especially on efficient imperative gener-
ation of HTML pages.
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12.17 MonoUntangle

Unnecessary mutual recursion is broken up again.

12.18 MonoReduce

Equivalents of the definitional equality rules are applied to simplify programs, with inlining again playing a
major role.

12.19 MonoShake, MonoOpt

Unneeded declarations are removed, and basic optimizations are repeated.

12.20 Fuse

The compiler tries to simplify calls to recursive functions whose results are immediately written as page
output. The write action is pushed inside the function definitions to avoid allocation of intermediate results.

12.21 MonoUntangle, MonoShake

Fuse often creates more opportunities to remove spurious mutual recursion.

12.22 Pathcheck

The compiler checks that no link or action name has been used more than once.

12.23 Cjrize

The program is translated to what is more or less a subset of C. If any use of functions as data remains at
this point, the compiler will complain.

12.24 C Compilation and Linking

The output of the last phase is pretty-printed as C source code and passed to the C compiler.
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